Updating search results...

Search Resources

1149 Results

View
Selected filters:
  • engineering
Space Travel
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students are introduced to the historical motivation for space exploration. They learn about the International Space Station as an example of recent space travel innovation and are introduced to new and futuristic ideas that space engineers are currently working on to propel space research far into the future!

Subject:
Applied Science
Engineering
Physical Science
Space Science
Technology
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Geoffrey Hill
Jane Evenson
Janet Yowell
Jessica Butterfield
Jessica Todd
Karen King
Sam Semakula
Date Added:
09/18/2014
Spaghetti Bridge
Read the Fine Print
Educational Use
Rating
0.0 stars

Civil engineers design structures such as buildings, dams, highways and bridges. Student teams explore the field of engineering by making bridges using spaghetti as their primary building material. Then they test their bridges to see how much weight they can carry before breaking.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
A Spectral Mystery
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

This is a lesson about using light to identify the composition of an object. Learners will use a spectrograph to gather data about light sources. Using the data they’ve collected, students are able to make comparisons between different light sources and make conjectures about the composition of a mystery light source. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System.

Subject:
Applied Science
Chemistry
Engineering
History
History, Law, Politics
Physical Science
Physics
Space Science
Technology
Material Type:
Activity/Lab
Lesson Plan
Student Guide
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
Spectroscopy
Read the Fine Print
Rating
0.0 stars

What happens when an excited atom emits a photon? What can we deduce about that atom based on the photons it can emit? A series of interactive models allows you to examine how the energy levels the electrons of an atom occupy affect the types of photons that can be emitted. Use a digital spectrometer to record which wavelengths certain atoms will emit, and then use this knowledge to compare and identify types of atoms. Students will be abe to:

Subject:
Applied Science
Chemistry
Education
Engineering
Mathematics
Physical Science
Physics
Material Type:
Data Set
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/13/2011
Splish, Splash, I was Takin' a Bath!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will explore the causes of water pollution and its effects on the environment through the use of models and scientific investigation. In the accompanying activities, they will investigate filtration and aeration processes as they are used for removing pollutants from water. Lastly, they will learn about the role of engineers in water treatment systems.

Subject:
Applied Science
Engineering
Geoscience
Life Science
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Date Added:
09/18/2014
Spring Away!
Read the Fine Print
Educational Use
Rating
0.0 stars

This lab demonstrates Hooke's Law with the use of springs and masses. Students attempt to determine the proportionality constant, or k-value, for a spring. They do this by calculating the change in length of the spring as different masses are added to it. The concept of a spring's elastic limit is also introduced, and the students test to makes sure the spring's elastic limit has not been reached during their lab tests. After compiling their data, they attempt to find an average value of the spring's k-value by measuring the slopes between each of their data points. Then they apply what they've learned about springs to how engineers might use that knowledge in the design of a toy that enables kids to jump 2-3 feet in the air.

Subject:
Applied Science
Engineering
Geoscience
Life Science
Mathematics
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Aubrey Mckelvey
Date Added:
09/18/2014
Star Light, Star Bright? Finding Remote Atmospheres
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

This is a lesson about detecting atmospheres of planets. Learners will explore stellar occultation events (by interpreting light curves) to determine if an imaginary dwarf planet “Snorkzat” has an atmosphere. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System.

Subject:
Applied Science
Engineering
Physical Science
Physics
Space Science
Technology
Material Type:
Activity/Lab
Interactive
Lesson Plan
Student Guide
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
Start Networking!
Read the Fine Print
Educational Use
Rating
0.0 stars

To get a better understanding of complex networks, students create their own, real social network example by interacting with their peers in the classroom and documenting the interactions. They represent the interaction data as a graph, calculate two mathematical quantities associated with the graph—the degree of each node and the degree distribution of the graph—and analyze how these quantities can be used to infer properties of the social network at hand.

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Debbie Jenkinson
Garrett Jenkinson
John Goutsias
Susan Frennesson
Date Added:
09/18/2014
State of Salmon 3rd grade Unit
Unrestricted Use
CC BY
Rating
0.0 stars

This learning sequence is anchored in the phenomena: Salmon populations in the Pacific Northwest are declining.

Part of the job of Washington Department of Fish and Wildlife (WDFW) is to figure out why salmon populations are declining and create plans for how to help increase fish populations. Throughout this unit, students will engage with the phenomenon of Pacific salmon population decline as they explore salmonid species and discover how WDFW raises healthy fish in hatcheries.

Students will explore salmonid life cycles and discover patterns among life cycles of plants and animals who interact with salmon. Students will then learn what makes healthy habitats for salmon. They will evaluate solutions to the problems of salmon migration above and below dams and examine salmons’ role in a healthy river system. Students will embark on a virtual field trip (in person field trips also available) to a WDFW fish hatchery to learn about current practices in hatchery management and identify ways the hatchery meets the habitat needs of fish. Finally, students will be called to work as an engineering team and help develop a tool to support salmon recovery by working as conservation engineers.

Subject:
Applied Science
Ecology
Education
Elementary Education
Environmental Science
Life Science
Material Type:
Activity/Lab
Data Set
Lesson Plan
Primary Source
Reading
Unit of Study
Author:
Washtington Department of Fish and Wildlife
Autumn Eckenrod
Date Added:
01/12/2023
States of Matter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as chemical engineers and use LEGO® MINDSTORMS® NXT robotics to record temperatures and learn about the three states of matter. Properties of matter can be measured in various ways, including volume, mass, density and temperature. Students measure the temperature of water in its solid state (ice) as it is melted and then evaporated.

Subject:
Applied Science
Chemistry
Engineering
Mathematics
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Akim Faisal
Date Added:
09/18/2014
States of Matter Basics
Unrestricted Use
CC BY
Rating
0.0 stars

Heat, cool and compress atoms and molecules and watch as they change between solid, liquid and gas phases.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Emily Moore
John Blanco
Kathy Perkins
Noah Podolefsky
Paul Beale
Sarah McKagan
Trish Loeblein
Wendy Adams
Date Added:
11/14/2011
Storing Android Accelerometer Data: App Design
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work through an online tutorial on MIT's App Inventor to learn how to create Android applications. Using those skills, they create their own applications and use them to collect data from an Android device accelerometer and store that data to databases. NOTE: Teachers and students must have a working knowledge of basic programming and App Inventor to complete this lesson. This lesson is not an introduction to MIT's App Inventor and is not recommended for use without prior knowledge of App Inventor to produce an end product. This lesson is an application for App Inventor that allows for the storage of persistent data (data that remains in memory even if an app is closed). This required prior knowledge can come from other experiences with the App Inventor. Also, many additional resources are available, such as tutorials from MIT. This lesson could also be used as an enrichment project for students who are self-motivated to learn the App Inventor software.

Subject:
Applied Science
Computing and Information
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Scott Burns
Date Added:
09/18/2014
Straining out the Dirt
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students build a water filter with activated carbon, cotton and other materials to remove chocolate powder from water.

Subject:
Applied Science
Ecology
Engineering
Environmental Science
Forestry and Agriculture
Geoscience
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Janet Yowell
Malinda Schaefer
Matt Lundberg
Sharon D. Pérez-Suárez
Date Added:
09/18/2014
Strange New Planet
Read the Fine Print
Rating
0.0 stars

This activity is about the use of remote sensing in planetary exploration. Learners will find out how human curiosity in planetary exploration results in science questions, engineering solutions, and teamwork. This activity demonstrates how planetary features are discovered by the use of remote-sensing techniques. Students will experience the different phases in planetary exploration, including telescope observations, fly by missions, orbiters, landers, rovers, and their own ideas about human exploration. The lesson models scientific inquiry using the 5E instructional model and includes teacher notes, prerequisite concepts and vocabulary.

Subject:
Applied Science
Engineering
History
History, Law, Politics
Physical Science
Space Science
Technology
Material Type:
Activity/Lab
Assessment
Lesson Plan
Student Guide
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
Strangers in Paradise
Read the Fine Print
Rating
0.0 stars

This activity introduces students to what a digital image is and how it relates to the real world. It involves a simple training exercise on making linear and area measurements using NIH Image software. The activity is part of Exploring the Environment.

Subject:
Applied Science
Engineering
Geoscience
Mathematics
Physical Science
Technology
Material Type:
Activity/Lab
Lesson Plan
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
The Stress That You Apply
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about contact stress and its applications in engineering. They are introduced to the concept of heavy loads, such as buildings, elephants, people and traffic, and learn how those heavy loads apply contact stress. Through the analysis of their own footprints, students determine their contact stress.

Subject:
Applied Science
Ecology
Engineering
Forestry and Agriculture
Geoscience
Life Science
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eduardo Suescun
Janet Yowell
Date Added:
09/18/2014
Stretching DNA
Unrestricted Use
CC BY
Rating
0.0 stars

Explore stretching just a single strand of DNA using optical tweezers or fluid flow. Experiment with the forces involved and measure the relationship between the stretched DNA length and the force required to keep it stretched. Is DNA more like a rope or like a spring?

Subject:
Genetics
Life Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Kathy Perkins
Meredith Betterton
Mike Dubson
Tom Perkins
Wendy Adams
Date Added:
12/01/2007
Structural Engineering (2nd - 3rd Grade) Five Lesson Unit
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This unit consists of five lessons covering architecture and structural engineering. Each lesson includes goals, anticipatory set, learner objectives, guided practice, procedure instructions, closing activities, and extensions. Student handouts and worksheets are also included.

Lesson 1: Animal Structures
Lesson 2: Homes
Lesson 3: Stability
Lesson 4: Local Towers & Bridges
Lesson 5: Schools

NGSS: K-2-ETS1-1, K-2-ETS1-2, K-2-ETS1-3, 3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3

Materials: blocks or other building toys, ruler, book or ball (for weight), graph paper, pencils, and floor plan of school or hand-drawn approximation featuring highlights.

Subject:
Applied Science
Architecture and Design
Engineering
Geometry
Mathematics
Material Type:
Activity/Lab
Lesson Plan
Author:
Columbia Gorge STEM Hub
Date Added:
08/07/2020
Structure of Earth Materials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides a comprehensive introduction to crystalline structure, crystal chemistry, and bonding in rock-forming minerals. It introduces the theory relating crystal structure and crystal symmetry to physical properties such as refractive index, elastic modulus, and seismic velocity. It surveys the distribution of silicate, oxide, and metallic minerals in the interiors and on the surfaces of planets, and discusses the processes that led to their formation. It also addresses why diamonds are hard and why micas split into thin sheets.

Subject:
Applied Science
Atmospheric Science
Chemistry
Engineering
Physical Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Evans, J.
Grove, Timothy
Date Added:
09/01/2004