Concluding a two-part lab activity, students use triple balance beams and graduated …
Concluding a two-part lab activity, students use triple balance beams and graduated cylinders to take measurements and calculate densities of several household liquids and compare them to the densities of irregularly shaped objects (as determined in Part 1). Then they create density columns with the three liquids and four solid items to test their calculations and predictions of the different densities. Once their density columns are complete, students determine the effect of adding detergent to the columns. After this activity, present the associated Density & Miscibility lesson for a discussion about why the column layers do not mix.
After students conduct the two associated activities, Density Column Lab - Parts …
After students conduct the two associated activities, Density Column Lab - Parts 1 and 2, present this lesson to provide them with an understanding of why the density column's oil, water and syrup layers do not mix and how the concepts of density and miscibility relate to water chemistry and remediation. Topics covered include miscibility, immiscibility, hydrogen bonds, hydrophobic and hydrophilic. Through the density column lab activities, students see liquids and solids of different densities interact without an understanding of why the resulting layers do not mix. This lesson gives students insight on some of the most fundamental chemical properties of water and how it interacts with different molecules.
Water supply is a problem of worldwide concern: more than 1 billion …
Water supply is a problem of worldwide concern: more than 1 billion people do not have reliable access to clean drinking water. Water is a particular problem for the developing world, but scarcity also impacts industrial societies. Water purification and desalination technology can be used to convert brackish ground water or seawater into drinking water. The challenge is to do so sustainably, with minimum cost and energy consumption, and with appropriately accessible technologies. This subject will survey the state-of-the-art in water purification by desalination and filtration. Fundamental thermodynamic and transport processes which govern the creation of fresh water from seawater and brackish ground water will be developed. The technologies of existing desalination systems will be discussed, and factors which limit the performance or the affordability of these systems will be highlighted. Energy efficiency will be a focus. Nanofiltration and emerging technologies for desalination will be considered. A student project in desalination will involve designing a well-water purification system for a village in Haiti.
Students use the engineering design process to assemble an electric racer vehicle. …
Students use the engineering design process to assemble an electric racer vehicle. After using Tinkercad to design blades for their racers, students print their designs using a MakerBot printer. Once the students finish assembly and install their vehicle’s air blades, they race their vehicles to see which design travels the furthest distance in the least amount of time. A discussion at the end of the activity allows students to reflect on what they learned and to evaluation the engineering design process as a group.
Students design and build model landfills using materials similar to those used …
Students design and build model landfills using materials similar to those used by engineers for full-scale landfills. Their completed small-size landfills are "rained" on and subjected to other erosion processes. The goal is to create landfills that hold the most garbage, minimize the cost to build and keep trash and contaminated water inside the landfill to prevent it from causing environmental damage. Teams create designs within given budgets, test the landfills' performance, and graph and compare designs for capacity, cost and performance.
Design for Electrical and Computer Engineers is written for students and teachers …
Design for Electrical and Computer Engineers is written for students and teachers engaged in electrical and computer engineering design projects, primarily in the senior year. It guides students and faculty through the steps necessary for the successful execution of design projects. The objective is to provide a treatment of the design process with a sound academic basis that is integrated with practical application. The foundation of the book is a strong vision — that a solid understanding of the Design Process, Design Tools, and the right mix of Professional Skills are critical for project and career success. This text is unique in providing a comprehensive design treatment for electrical and computer engineering.
Students discover how engineers can use biomimicry to enhance their designs. They …
Students discover how engineers can use biomimicry to enhance their designs. They learn how careful observation of nature becoming a nature detective, so to speak can lead to new innovations and products. In this activity, students reverse engineer a flower to glean design ideas for new products.
Students use their creative skills to determine a way to safely mail …
Students use their creative skills to determine a way to safely mail raw (dry, uncooked) spaghetti using only the provided materials. To test the packing designs, the spaghetti is mailed through the postal system and evaluated after delivery.
Are you a design practitioner eager to become more strategic? Are you …
Are you a design practitioner eager to become more strategic? Are you a business professional who wants to become more innovative? In this course, made by the world’s first strategic design school, you’ll follow the lead of big successful companies who already create new business opportunities and spark innovation by practicing design.
This course will introduce you to a hands-on design approach for finding new business opportunities. You will experience first-hand how design can be of value for your organisation. You’ll be challenged to create your own concepts that generate new business opportunities.
This course is produced by the same team that created the Strategic Product Design master programme at TU Delft, one of the oldest and most established programmes of strategic design in the world. Moreover, industry experts will help bridging design practice and business theory in a way that is unique in the present educational landscape.
The course covers the basic techniques for evaluating the maximum forces and …
The course covers the basic techniques for evaluating the maximum forces and loads over the life of a marine structure or vehicle, so as to be able to design its basic configuration. Loads and motions of small and large structures and their short-term and long-term statistics are studied in detail and many applications are presented in class and studied in homework and laboratory sessions. Issues related to seakeeping of ships are studied in detail. The basic equations and issues of maneuvering are introduced at the end of the course. Three laboratory sessions demonstrate the phenomena studied and provide experience with experimental methods and data processing. This course was originally offered in Course 13 (Ocean Engineering) as 13.42.
In this video segment adapted from Design Squadí_í_íŹa PBS TV series featuring …
In this video segment adapted from Design Squadí_í_íŹa PBS TV series featuring high school contestants tackling engineering challengesí_í_íŹlearn about the fundamentals of sound as student teams create percussive and stringed instruments for a local band.
In this video segment adapted from Design Squadí_í_íŹa PBS TV series featuring …
In this video segment adapted from Design Squadí_í_íŹa PBS TV series featuring high school contestants tackling engineering challengesí_í_íŹstudents employ the concepts of tension and compression to build a suspension bridge without the aid of power tools.
In this video segment adapted from Design Squadí_í_íŹa PBS TV series featuring …
In this video segment adapted from Design Squadí_í_íŹa PBS TV series featuring high school contestants tackling engineering challengesí_í_íŹstudents employ the concepts of tension and compression as they build a truss bridge without the aid of power tools.
Students practice the initial steps involved in an engineering design challenge. They …
Students practice the initial steps involved in an engineering design challenge. They begin by reviewing the steps of the engineering design loop and discussing the client need for the project. Next, they identify a relevant context, define the problem within their design teams, and examine the project's requirements and constraints. (Note: Conduct this activity in the context of a design project that students are working on, which could be a challenge determined by the teacher, brainstormed with the class, or the example project challenge provided [to design a prosthetic arm that can perform a mechanical function].)
Through Internet research, patent research, standards and codes research, user interviews (if …
Through Internet research, patent research, standards and codes research, user interviews (if possible) and other techniques (idea web, reverse engineering), students further develop the context for their design challenge. In subsequent activities, the design teams use this body of knowledge about the problem to generate product design ideas. (Note: Conduct this activity in the context of a design project that students are working on, which could be a challenge determined by the teacher, brainstormed with the class, or the example project challenge provided [to design a prosthetic arm that can perform a mechanical function]. This activity is Step 2 in a series of six that guide students through the engineering design loop.)
Brainstorming is a team creativity activity that helps generate a large number …
Brainstorming is a team creativity activity that helps generate a large number of potential solutions to a problem. In this activity, students participate in a group brainstorming activity to generate possible solutions to their engineering design challenge. Students learn brainstorming guidelines and practice within their teams to create a poster of ideas. The posters are used in a large group critiquing activity that ultimately helps student teams create a design project outline. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 3 in a series of six that guide students through the engineering design loop.)
Engineering analysis distinguishes true engineering design from "tinkering." In this activity, students …
Engineering analysis distinguishes true engineering design from "tinkering." In this activity, students are guided through an example engineering analysis scenario for a scooter. Then they perform a similar analysis on the design solutions they brainstormed in the previous activity in this unit. At activity conclusion, students should be able to defend one most-promising possible solution to their design challenge. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 4 in a series of six that guide students through the engineering design loop.)
Students learn about the manufacturing phase of the engineering design process. They …
Students learn about the manufacturing phase of the engineering design process. They start by building prototypes, which is a special type of model used to test new design ideas. Students gain experience using a variety of simple building materials, such as foam core board, balsa wood, cardstock and hot glue. They present their prototypes to the class for user testing and create prototype iterations based on feedback. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 5 in a series of six that guide students through the engineering design loop.)
As students learn more about the manufacturing process, they use the final …
As students learn more about the manufacturing process, they use the final prototypes created in the previous activity to evaluate, design and manufacture final products. Teams work with more advanced materials and tools, such as plywood, Plexiglas, metals, epoxies, welding materials and machining tools. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 6 in a series of six that guide students through the engineering design loop.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.