Updating search results...

Search Resources

4238 Results

View
Selected filters:
  • Engineering
Database, Internet, and Systems Integration Technologies
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course addresses information technology fundamentals, including project management and software processes, data modeling, UML, relational databases and SQL. Topics covered include internet technologies, such as XML, web services, and service-oriented architectures. This course provides an introduction to security and presents the fundamentals of telecommunications and includes a project that involves requirements / design, data model, database implementation, website, security and data network. No prior programming experience required.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Kocur, George
Date Added:
09/01/2013
Database Systems
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course relies on primary readings from the database community to introduce graduate students to the foundations of database systems, focusing on basics such as the relational algebra and data model, schema normalization, query optimization, and transactions. It is designed for students who have taken 6.033 (or equivalent); no prior database experience is assumed, though students who have taken an undergraduate course in databases are encouraged to attend.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Curino, Carlo
Madden, Samuel
Morris, Robert
Stonebraker, Michael
Date Added:
09/01/2010
Database Systems
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course relies on primary readings from the database community to introduce graduate/undergraduate students to the foundations of database systems, focusing on basics such as the relational algebra and data model, schema normalization, query optimization, transactions, and other more advanced topics. No prior database experience is assumed, though students who have taken an undergraduate course in databases are encouraged to attend.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Kraska, Tim
Madden, Samuel
Date Added:
09/01/2023
Data to Information
Read the Fine Print
Rating
0.0 stars

This lesson incorporates sea surface data collected by NASA satellites. Data for three surface characteristics- height, temperature and speed- are used for several activities. Students examine the differences in speed of currents relative to distance from the Equator. Sea surface data anomalies are charted and further analyzed. In addition, surface current data is presented to examine patterns related to El Niño. Note that this is lesson three of five on the Ocean Motion website. Each lesson investigates ocean surface circulation using satellite and model data and can be done independently. See Related URL's for links to the Ocean Motion Website that provide science background information, data resources, teacher material, student guides and a lesson matrix.

Subject:
Applied Science
Atmospheric Science
Engineering
Geoscience
Mathematics
Oceanography
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Case Study
Data Set
Diagram/Illustration
Lesson Plan
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
Daylighting
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course explores natural and electric lighting that integrates occupant comfort, energy efficiency and daylight availability in an architectural context. Students are asked to evaluate daylighting in real space and simulations, and also high dynamic range photography and physical model building.

Subject:
Applied Science
Architecture and Design
Career and Technical Education
Engineering
Environmental Science
Environmental Studies
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Reinhart, Christoph
Date Added:
02/01/2012
Daylighting Design
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the many different ways that engineers provide natural lighting to interior spaces. They analyze various methods of daylighting by constructing model houses from foam core board and simulating the sun with a desk lamp. Teams design a daylighting system for their model houses based on their observations and calculations of the optimal use of available sunlight to their structure.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Landon B. Gennetten
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
10/14/2015
Day of AI
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This resource is to support teachers and educators to run Day of AI activities in their classrooms through curriculum packages and teacher training, all of which is available at no cost to participants.
Developed by leading faculty and educators from MIT RAISE, the curriculum features up to four hours of hands-on activities that engage kids in creative discovery, discussion, and play as they learn the fundamentals of AI, investigate the societal impact of these technologies, and bring artificial intelligence to life through lessons and activities that are accessible to all, even those with no computer science or technical background.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
None, MIT RAISE
Date Added:
02/01/2022
Decibels and Acoustical Engineering
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students learn that sound is energy and has the ability to do work. Students discover that sound is produced by a vibration and they observe soundwaves and how they travel through mediums. They understand that sound can be absorbed, reflected or transmitted. Through associated activities, videos and a PowerPoint presentation led by the teacher, students further their exploration of sound through discussions in order to build background knowledge.

Subject:
Applied Science
Engineering
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Emma Cipriani
Geanna Schwaegerle
La’Nise Gray
Natalie Jackson
Date Added:
03/01/2019
Decimals, Fractions & Percentages
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about and practice converting between fractions, decimals and percentages. Using a LEGO® MINDSTORMS® NXT robot and a touch sensor, each group inputs a fraction of its choosing. Team members convert this same fraction into a decimal, and then a percentage via hand calculations, and double check their work using the NXT robot. Then they observe the robot moving forward and record that distance. Students learn that the distance moved is a fraction of the full distance, based on the fraction that they input, so if they input ½, the robot moves half of the original distance. From this, students work backwards to compute the full distance. Groups then compete in a game in which they are challenged to move the robot as close as possible to a target distance by inputting a fraction into the NXT bot.

Subject:
Applied Science
Engineering
Mathematics
Technology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Javed Narain
Date Added:
09/18/2014
Decision Making Under Uncertainty: Introduction to Structured Expert Judgment
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In an increasingly data-driven world, data and its use aren’t always all it’s cracked up to be. This course aims to address the critical lack of any or appropriate data in many areas where complex decisions need to be made.

For instance, how can you predict volcano activity when no eruptions have been recorded over a long period of time? Or how can you predict how many people will be resistant to antibiotics in a country where there is no available data at national level? Or how about estimating the time needed to evacuate people in flood risk areas?

In situations like these, expert opinions are needed to address complex decision-making problems. This course, aimed at researchers and professionals from any academic background, will show you how expert opinion can be used for uncertainty quantification in a rigorous manner.

Various techniques are used in practice. They vary from the informal and undocumented opinion of one expert to a fully documented and formal elicitation of a panel of experts, whose uncertainty assessments can be aggregated to provide support for complex decision making.

In this course you will be introduced to state-of-the-art expert judgment methods, particularly the Classical Model (CM) or Cooke’s method, which is arguably the most rigorous method for performing Structured Expert Judgment.

CM, developed at TU Delft by Roger Cooke, has been successfully applied for over 30 years in areas as diverse as climate change, disaster management, epidemiology, public and global health, ecology, aeronautics/aerospace, nuclear safety, environment and ecology, engineering and many others.

Subject:
Applied Science
Engineering
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
Dr. A.M. Hanea
Dr. ir. G.F. Nane
Prof. dr. R.M. Cooke
Date Added:
02/14/2020
Decision Making in Large Scale Systems
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to the theory and application of large-scale dynamic programming. Topics include Markov decision processes, dynamic programming algorithms, simulation-based algorithms, theory and algorithms for value function approximation, and policy search methods. The course examines games and applications in areas such as dynamic resource allocation, finance and queueing networks.

Subject:
Applied Science
Computer Science
Economics
Engineering
Social Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
De Farias, Daniela
Date Added:
02/01/2004
Deep Impact Videos and Animations
Read the Fine Print
Rating
0.0 stars

This is a webpage with videos that relate to the Deep Impact Encounter. Learners can watch videos about the mission, encounter, science, and results.

Subject:
Applied Science
Engineering
History
History, Law, Politics
Physical Science
Space Science
Technology
Material Type:
Diagram/Illustration
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
Defining Real-World Problems With the D.I.S. Method: Describe, Inquire, State
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces the D.I.S. method to structure and define real-world problems. The D.I.S., which stands for “Describe, Inquire, State," is a domain-agnostic method for structuring (or defining) ill-structured problems.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Berman, Claire
Lavi, Rea
Paz, Alejandro
Date Added:
02/01/2024
Definition, Types, Methods, Approaches
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course introduces basic concepts in software testing, and covers basic definitions, terms and techniques used. As such the course introduces two of the fundamental techniques of Test case identification namely Blackbox and whitebox testing and various approaches involved in both techniques.

Subject:
Applied Science
Engineering
Material Type:
Primary Source
Author:
All Posts
Rajkumar Sm Is A Founder Of Softwaretestingmaterial He Is A Certified Software Test Engineer Profession Blogger Youtuber Choice He Has An Extensive Experience In The Field Of Software Testing He Writes Here About Software Testing Which Includes Both Manual Automation Testing He Loves To Be With His Wife Cute Little Kid 'freedom'
Date Added:
03/15/2021
Deformation: Nanocomposite Compression
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about nanocomposites, compression and strain as they design and program robots that compress materials. Student groups conduct experiments to determine how many LEGO MINDSTORMS(TM) NXT motor rotations it takes to compress soft nanocomposites, including mini marshmallows, Play-Doh®, bread and foam. They measure the length and width of their nanocomposite objects before and after compression to determine the change in length and width as a function of motor rotation.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jennifer S. Haghpanah
Date Added:
09/18/2014
Delay Insentitive Circuits -- Structures, Semantics, and Strategies
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The design of concurrent distributed hardware systems is a major challenge for engineers today and is bound to escalate in the future, but engineering education continues to emphasize traditional tools of logic design that are just not up to the job. For engineers tackling realistic projects, improvised attempts at synchronization across multiple clock domains have long been a fact of life. Prone to hazards and metastability, these ad hoc interfaces could well be the least trustworthy aspects of a system, and typically also the least able to benefit from any readily familiar textbook techniques of analysis or verification.

Progress in the long run depends on a change of tactics. Instead of the customary but inevitably losing battle to describe complex systems in terms of their stepwise time evolution, taking their causal relationships and handshaking protocols as a starting point cuts to the chase by putting the emphasis where it belongs. This way of thinking may call for setting aside a hard earned legacy of practice and experience, but it leads ultimately to a more robust and scalable methodology.

Delay insensitive circuits rely on local coordination and control from the ground up. The most remarkable consequence of adhering to this course is that circuits can get useful things done without any clock distribution network whatsoever. Because a handshake acknowledgment concludes each interaction among primitive components and higher level subsystems alike, a clock pulse to mark them would be superfluous. This effect can bring a welcome relief to projects whose timing infrastructure would otherwise tend to create more problems than it solves.

The theory of delay insensitive circuits is not new but has not yet attracted much attention outside of its research community. At best ignored and at worst discouraged in standard curricula, this topic until now has been accessible only by navigating a sea of conference papers and journal articles, some of them paywalled. Popular misconceptions and differing conventions about terminology and notation have posed further barriers to entry. To address this need, this book presents a unified account of delay insensitive circuits from first principles to cutting edge concepts, subject only to an undergraduate-level understanding of discrete math. In an approachable tutorial format with numerous illustrations, exercises, and over three hundred references, it guides an engineering professional or advanced student towards proficiency in this extensive field.

Subject:
Applied Science
Career and Technical Education
Computer Science
Electronic Technology
Engineering
Material Type:
Textbook
Author:
Dennis Furey
Date Added:
07/16/2019
Delft Design Approach
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In our daily lives we use hundreds or even thousands of products and services. They are all designed, some with more success than others. The ‘Delft Design Approach’ is a structured approach that helps designers to tackle complex design challenges: from formulating a strategic vision, to mapping user behaviors, their needs and their environment, to developing and selecting meaningful proposals for products and services.

DDA691x offers a college-level introduction to the Delft Design Approach through lectures and exercises on design fundamentals and 6 methods. You will understand basic models and concepts that underlie the Delft approach. You will also develop the capability to use 6 basic methods in a design context. You will do so by applying the methods to realistic design challenges and by reflecting on your own performance by comparing it to that of expert designers as well as through peer discussion.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
Dr. Jaap Daalhuizen
Date Added:
08/01/2018
The Delft Sand, Clay & Rock Cutting Model
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In dredging, trenching, (deep sea) mining, drilling, tunnel boring and many other applications, sand, clay or rock has to be excavated. This book gives an overview of cutting theories. It starts with a generic model, which is valid for all types of soil (sand, clay and rock) after which the specifics of dry sand, water saturated sand, clay, atmospheric rock and hyperbaric rock are covered. For each soil type small blade angles and large blade angles, resulting in a wedge in front of the blade, are discussed. For each case considered, the equations/model for the cutting forces, power and specific energy are given. The models are verified with laboratory research, mainly at the Delft University of Technology, but also with data from literature.

Subject:
Applied Science
Career and Technical Education
Engineering
Maritime Science
Material Type:
Textbook
Author:
Sape A. Miedema
Date Added:
01/24/2019
Density Column Lab - Part 1
Read the Fine Print
Educational Use
Rating
0.0 stars

In this first part of a two-part lab activity, students use triple balance beams and graduated cylinders to take measurements and calculate the densities of several common, irregularly shaped objects with the purpose to resolve confusion about mass and density. After this activity, conduct the associated Density Column Lab - Part 2 activity before presenting the associated Density & Miscibility lesson for discussion about concepts that explain what students have observed.

Subject:
Applied Science
Engineering
Geoscience
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Barry Williams
Jessica Ray
Phyllis Balcerzak
Date Added:
09/18/2014