Updating search results...

Search Resources

108 Results

View
Selected filters:
  • NGSS.MS.ETS1.3 - Analyze data from tests to determine similarities and differences amon...
  • NGSS.MS.ETS1.3 - Analyze data from tests to determine similarities and differences amon...
Saved by the Sun
Unrestricted Use
CC BY
Rating
0.0 stars

This activity features video segments from a 2007 PBS program on solar energy. Students follow a seven-step invention process to design, build, and test a solar cooker that will pasteurize water. In addition, they are asked to describe how transmission, absorption, and reflection are used in a solar cooker to heat water and to evaluate what variables contribute to a successful cooker.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
Jeff Lockwood
NOVA Teachers
Date Added:
06/19/2012
Seeing the World through a Different Lens
Read the Fine Print
Educational Use
Rating
0.0 stars

Students participate in a variety of activities modeling different disabilities. They gain a better understanding of physical limitations while performing tasks at workstations without the use of their thumbs (taped down), impaired vision (various glasses) and impaired mobility (using crutches and wheelchairs). After discussing their experiences, they work in teams to create or improve on an adaptive device. Like biomedical engineers, students are challenged to design with the purpose of helping make a particular task easier for another person.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Shake It Up! Engineering for Seismic Waves
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about how engineers design and build shake tables to test the ability of buildings to withstand the various types of seismic waves generated by earthquakes. Just like engineers, students design and build shake tables to test their own model buildings made of toothpicks and mini marshmallows. Once students are satisfied with the performance of their buildings, they put them through a one-minute simulated earthquake challenge.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Denise W. Carlson
Stephanie Rivale
Date Added:
09/18/2014
Slow the Cylinder
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn why shock absorbers are necessary on vehicles, how they dampen the action of springs, and what factors determine the amount of dampening. They conduct an experiment to determine the effect of spring strength and port diameter on the effectiveness of a shock absorber. Using a syringe, a set of springs, and liquids of different viscosities, students determine the effects of changing pressures and liquids on the action of a model shock absorber. They analyze their data through the lens of an engineer.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Cliff Orgaard
Marissa H. Forbes
Date Added:
09/18/2014
Solar Energy (Middle School NGSS Unit)
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This unit explores the NGSS Middle School bundle for Engineering Design (MS-ETS1-1, MS-ETS1-2, MS-ETS1-3, MS-ETS1-4) by engaging students in a Project-Based engineering task where students develop and apply their understanding of solar energy to create a solar device which can generate electricity for people who have lost power due to a natural disaster.

Subject:
Physical Science
Material Type:
Activity/Lab
Date Added:
05/24/2018
Sticks and Stones Will Break That Bone!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the strength of bones and methods of helping to mend fractured bones. During a class demonstration, a chicken bone is broken by applying a load until it reaches a point of failure (fracture). Then, working as biomedical engineers, students teams design their own splint or cast to help repair a fractured bone, learning about the strength of materials used.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jaime Morales
Malinda Schaefer Zarske
Date Added:
10/14/2015
Sumobot Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply their knowledge of constructing and programming LEGO MINDSTORMS (TM)NXT robots to create sumobots - strong robots capable of pushing other robots out of a ring. To meet the challenge, groups follow the steps of the engineering design process and consider robot structure, weight and gear ratios in their designs to make their robots push as hard as possible to force robot opponents out of the ring. A class competition serves as the final test to determine the best designed robot, illustrating the interrelationships between designing, building and programming. This activity gives students the opportunity to be creative as well as have fun applying and combining what they have learned through the previous activities and lessons in this and prior units in the series. A PowerPoint (tm) presentation, pre/post quizzes and a worksheet are provided.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Sachin Nair
Satish S. Nair
Date Added:
09/18/2014
Super Spinners!
Read the Fine Print
Educational Use
Rating
0.0 stars

Use this hands-on activity to demonstrate rotational inertia, rotational speed, angular momentum, and velocity. Students build at least two simple spinners to conduct experiments with different mass distributions and shapes, as they strive to design and build the spinner that spins the longest.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015
Swing in Time
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine the motion of pendulums and come to understand that the longer the string of the pendulum, the fewer the number of swings in a given time interval. They see that changing the weight on the pendulum does not have an effect on the period. They also observe that changing the angle of release of the pendulum has negligible effect upon the period.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015
Thermal Energy House
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

In this engineering unit, students are developing background knowledge on heat, heat transfer and conservation. While this unit can be a stand-alone exercise, it has been designed to provide a way for students to gather data and derive evidence-based conclusions to help them choose the best materials to use in a science class solar cooker project. Students build cardboard houses to explore the movement and conservation of heat energy. A heat source is placed inside the house and students use vernier temperature probes and graphing software to gather and tabulate temperature data. Each house is standard, so that the students understand that we are all gathering data in a consistent way.
Students must calculate percentage of wall space given to doors and windows. Students will compare data from team to team, examining heat loss as recorded by temperature differences as a function of window and door areas. Students will cover doors and windows with various materials, examining different insulating qualities. Students will examine the effect on temperature of different colors of wall surface on the interior of the house. After gathering data, students will work to draw conclusions from the gathering of data. Students will construct charts and tables to tabulate data by hand, then will transfer data to Excel spreadsheets if technology is available.

Subject:
Applied Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Lane County STEM Hub
Provider Set:
Content in Context SuperLessons
Date Added:
06/20/2016
Tower Investigation and the Egg
Read the Fine Print
Educational Use
Rating
0.0 stars

Towers have been a part of developed society for centuries, serving a variety of purposes, from watch towers to modern cell towers. In this activity, student groups design and build three types of towers (guyed or cable-supported, free-standing or self-standing, and monopole), engineering them to meet the requirements that they hold an egg one foot high for 15 seconds.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Tunnel Through!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply their knowledge about mountains and rocks to transportation engineering, with the task of developing a model mountain tunnel that simulates the principles behind real-life engineering design. Student teams design and create model tunnels through a clay mountain, working within design constraints and testing for success; the tunnels must meet specific design requirements and withstand a certain load.

Subject:
Applied Science
Career and Technical Education
Engineering
Geology
Logistics and Transportation
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Malinda Schaefer Zarske
Marissa Hagan Forbes
Date Added:
09/18/2014
Urban Stormwater Management
Read the Fine Print
Educational Use
Rating
0.0 stars

Engineers design and implement many creative techniques for managing stormwater at its sources in order to improve and restore the hydrology and water quality of developed sites to pre-development conditions. Through the two lessons in this unit, students are introduced to green infrastructure (GI) and low-impact development (LID) technologies, including green roofs and vegetative walls, bioretention or rain gardens, bioswales, planter boxes, permeable pavement, urban tree canopies, rainwater harvesting, downspout disconnection, green streets and alleys, and green parking. Student teams take on the role of stormwater engineers through five associated activities. They first model the water cycle, and then measure transpiration rates and compare native plant species. They investigate the differences in infiltration rates and storage capacities between several types of planting media before designing their own media mixes to meet design criteria. Then they design and test their own pervious pavement mix combinations. In the culminating activity, teams bring together all the concepts as well as many of the materials from the previous activities in order to create and install personal rain gardens. The unit prepares the students and teachers to take on the design and installation of bigger rain garden projects to manage stormwater at their school campuses, homes and communities.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brigith Soto
Jennifer Butler
Krysta Porteus
Maya Trotz
Ryan Locicero
William Zeman
Date Added:
09/18/2014
Using Waits, Loops and Switches
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are given a difficult challenge that requires they integrate what they have learned so far in the unit about wait blocks, loops and switches. They incorporate these tools into their programming of the LEGO MINDSTORMS(TM) NXT robots to perform different tasks depending on input from a sound sensor and two touch sensors. This activity helps students understand how similar logic is implemented for other every day device operations via computer programs. A PowerPoint® presentation, pre/post quizzes and worksheet are provided.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Riaz Helfer
Satish S. Nair
Date Added:
09/18/2014
Wait Program!
Read the Fine Print
Educational Use
Rating
0.0 stars

After completing the associated lesson, students test their understanding in two programming tasks that utilize LEGO MINDSTORMS(TM) NXT robots and sound/touch sensors. In the first challenge, students become acquainted with wait blocks by designing programs to simply make robots move forward until "hearing" a noise, and then turn left. The second, more challenging activity pushes students to fully understand the potential of wait blocks. They create programs that make the robots change speed several times when a touch sensor is pressed. Students gain practice in the iterative design-program-test-redesign process. A PowerPoint® presentation, pre/post quizzes and worksheet are provided.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Riaz Helfer
Satish S. Nair
Date Added:
09/18/2014
Water Desalination Plant
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use a thermal process approach to design, build and test a small-scale desalination plant that is capable of significantly removing the salt content from a saltwater solution. Students use a saltwater circuit to test the efficiency of their model desalination plant and learn how the water cycle is the basis for the thermal processes that drive their desalination plant.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Denise W. Carlson
Juan Ramirez Jr.
Stephanie Rivale
Date Added:
09/18/2014
Water Remediation Lab
Read the Fine Print
Educational Use
Rating
0.0 stars

Students measure the effectiveness of water filters in purifying contaminated water. They prepare test water by creating different concentrations of bleach (chlorine-contaminated) water. After passing the contaminated water through commercially available Brita® water filters designed to purify drinking water, students determine the chlorine concentration of the purified water using chlorine test strips and measure the adsorption of chlorine onto activated carbon over time. They graph and analyze their results to determine the effectiveness of the filters. The household active carbon filters used are one example of engineer-designed water purification systems.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Barry Williams
Jessica Ray
Phyllis Balcerzak
Date Added:
09/18/2014