Updating search results...

Search Resources

121 Results

View
Selected filters:
  • equations
Math, Grade 6, Equations and Inequalities, Solving Problems Involving Proportions
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents solve problems using equations of the form x + p = q and px = q, as well as problems involving proportions.Key ConceptsStudents will extend what they know about writing expressions to writing equations. An equation is a statement that two expressions are equivalent. Students will write two equivalent expressions that represent the same quantity. One expression will be numerical and the other expression will contain a variable.It is important that when students write the equation, they define the variable precisely. For example, n represents the number of minutes Aiko ran, or x represents the number of boxes on the shelf.Students will then solve the equations and thereby solve the problems.Students will solve proportion problems by solving equations. This makes sense because a proportion such as xa=bc is really just an equation of the form xp = q where p=1a and q=bc.Students will also compare their algebraic solutions to an arithmetic solution for the problem. They will see, for example, that a problem that might be solved arithmetically by subtracting 5 from 78 can also be solved algebraically by solving x + 5 = 78, where 5 is subtracted from both sides—a parallel solution to subtracting 5 from 78.Goals and Learning ObjectivesUse equations of the form x + p = q and xp = q to solve problems.Solve proportion problems using equations.ELL: ELLs may have difficulty verbalizing their reasoning, particularly because word problems are highly language dependent. Accommodate ELLs by providing extra time for them to process the information. Note that this problem is a good opportunity for ELLs to develop their literacy skills since it incorporates reading, writing, listening, and speaking skills. Encourage students to challenge each others' ideas and justify their thinking using academic and specialized mathematical language.

Subject:
Algebra
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Equations and Inequalities, Substituting A Given Value For A Variable
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewUsing a balance scale, students decide whether a certain value of a variable makes a given equation or inequality true. Then students extend what they learned using the balance scale to substituting a given value for a variable into an equation or inequality to decide if that value makes the equation or inequality true or false.Key ConceptsStudents will extend what they know about substituting a value for a variable into an expression to evaluate that expression.Equations and inequalities may contain variables. These equations or inequalities are neither true nor false. When a value is substituted for a variable, the equation or inequality then becomes true or false. If the equation or inequality is true for that value of the variable, that value is considered a solution to the equation or inequality.Goals and Learning ObjectivesUnderstand what solving an equation or inequality means.Use substitution to determine whether a given number makes an equation or inequality true.

Subject:
Algebra
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Getting Started
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Getting Started

Type of Unit: Introduction

Prior Knowledge

Students should be able to:

Solve and write numerical equations for whole number addition, subtraction, multiplication, and division problems.
Use parentheses to evaluate numerical expressions.
Identify and use the properties of operations.

Lesson Flow

In this unit, students are introduced to the rituals and routines that build a successful classroom math community and they are introduced to the basic features of the digital course that they will use throughout the year.

An introductory card sort activity matches students with their partner for the week. Then over the course of the week, students learn about the lesson routines: Opening, Work Time, Ways of Thinking, Apply the Learning, Summary of the Math, and Reflection. Students learn how to present their work to the class, the importance of taking responsibility for their own learning, and how to effectively participate in the classroom math community.

Students then work on Gallery problems to further explore the program’s technology resources and tools and learn how to organize their work.

The mathematical work of the unit focuses on numerical expressions, including card sort activities in which students identify equivalent expressions and match an expression card to a word card that describes its meaning. Students use the properties of operations to identify equivalent expressions and to find unknown values in equations.

Subject:
Mathematics
Material Type:
Unit of Study
Provider:
Pearson
Math, Grade 6, Getting Started, Ways of Thinking and Properties of Operations
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students discuss as a class the important ways that listeners contribute to mathematical discussions during Ways of Thinking presentations. Students then use the properties of operations to find the value of each fruit used in equations.Key ConceptsStudents use the properties of operations to find the value of each fruit used in different equations. By considering several equations, students can match each of the 10 fruits to the whole numbers 0 through 9. This work helps students see why representing unknown numbers with letters is useful.Goals and Learning ObjectivesContribute as listeners during the Ways of Thinking discussion.Identify the whole numbers that make an equation true.Use the properties of operations, when appropriate, to justify which whole numbers represent unknown values.

Subject:
Algebra
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Rate
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Rate

Type of Unit: Concept

Prior Knowledge

Students should be able to:

Solve problems involving all four operations with rational numbers.
Understand quantity as a number used with a unit of measurement.
Solve problems involving quantities such as distances, intervals of time, liquid volumes, masses of objects, and money, and with the units of measurement for these quantities.
Understand that a ratio is a comparison of two quantities.
Write ratios for problem situations.
Make and interpret tables, graphs, and diagrams.
Write and solve equations to represent problem situations.

Lesson Flow

In this unit, students will explore the concept of rate in a variety of contexts: beats per minute, unit prices, fuel efficiency of a car, population density, speed, and conversion factors. Students will write and refine their own definition for rate and then use it to recognize rates in different situations. Students will learn that every rate is paired with an inverse rate that is a measure of the same relationship. Students will figure out the logic of how units are used with rates. Then students will represent quantitative relationships involving rates, using tables, graphs, double number lines, and formulas, and they will see how to create one such representation when given another.

Subject:
Algebra
Mathematics
Material Type:
Unit of Study
Provider:
Pearson
Math, Grade 7
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Four full-year digital course, built from the ground up and fully-aligned to the Common Core State Standards, for 7th grade Mathematics. Created using research-based approaches to teaching and learning, the Open Access Common Core Course for Mathematics is designed with student-centered learning in mind, including activities for students to develop valuable 21st century skills and academic mindset.

Subject:
Mathematics
Material Type:
Full Course
Provider:
Pearson
Date Added:
10/06/2016
Math, Grade 7, Algebraic Reasoning
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Algebraic Reasoning

Type of Unit: Concept

Prior Knowledge

Students should be able to:

Add, subtract, multiply, and divide rational numbers.
Evaluate expressions for a value of a variable.
Use the distributive property to generate equivalent expressions including combining like terms.
Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true?
Write and solve equations of the form x+p=q and px=q for cases in which p, q, and x are non-negative rational numbers.
Understand and graph solutions to inequalities x<c or x>c.
Use equations, tables, and graphs to represent the relationship between two variables.
Relate fractions, decimals, and percents.
Solve percent problems included those involving percent of increase or percent of decrease.

Lesson Flow

This unit covers all of the Common Core State Standards for Expressions and Equations in Grade 7. Students extend what they learned in Grade 6 about evaluating expressions and using properties to write equivalent expressions. They write, evaluate, and simplify expressions that now contain both positive and negative rational numbers. They write algebraic expressions for problem situations and discuss how different equivalent expressions can be used to represent different ways of solving the same problem. They make connections between various forms of rational numbers. Students apply what they learned in Grade 6 about solving equations such as x+2=6 or 3x=12 to solving equations such as 3x+6=12 and 3(x−2)=12. Students solve these equations using formal algebraic methods. The numbers in these equations can now be rational numbers. They use estimation and mental math to estimate solutions. They learn how solving linear inequalities differs from solving linear equations and then they solve and graph linear inequalities such as −3x+4<12. Students use inequalities to solve real-world problems, solving the problem first by arithmetic and then by writing and solving an inequality. They see that the solution of the algebraic inequality may differ from the solution to the problem.

Subject:
Algebra
Mathematics
Material Type:
Unit of Study
Provider:
Pearson
Math, Grade 7, Algebraic Reasoning, Algebraic Expressions & Equations
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students use algebraic expressions and equations to represent rules of thumb involving measurement. They use properties of operations and the relationships between fractions, decimals, and percents to write equivalent expressions.Key ConceptsExpressions and equations are different. An expression is a number, a variable, or a combination of numbers and variables. Some examples of expressions are:74x5a + b3(2m + 1)In Grade 7, the focus is on linear expressions. A linear expression is a sum of terms that are either rational numbers or a rational number times a variable (with an exponent of either 0 or 1). If an expression contains a variable, it is called an algebraic expression. To evaluate an expression, each variable is replaced with a given value.Equivalent expressions are expressions for which a given value can be substituted for each variable and the value of the expressions are the same.An equation is a statement that two expressions are equal. An equation can be true or false. To solve an equation, students find the value of the variable that makes the equation true.Students solve an equation that involves finding 10% of a number. They see that finding 10% of the number is the same as finding 0.1 of the number, or finding 110 of the number.Goals and Learning ObjectivesWrite expressions and equations to represent real-world situations.Evaluate expressions for given values of a variable.Use properties of operations to write equivalent expressions.Solve one-step equations.Check the solution to an equation.

Subject:
Algebra
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Algebraic Reasoning, Algebraic Reasoning
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students explore the effects of wind on a plane's time and distance and represent these situations using algebraic expressions and equations. They use terms with positive, negative, and zero coefficients.Key ConceptsIn this lesson, students show what they remember from Grade 6 about writing expressions and solving one-step equations. They use what they learned earlier in Grade 7 about adding and subtracting integers. They extend these concepts to write and interpret an expression with a negative coefficient.Goals and Learning ObjectivesReview addition and subtraction of integers.Review the relationship between distance, time, and speed.Write an algebraic expression for distance in terms of time, t.Write a term with a negative coefficient.Review solving a one-step equation using the multiplication property of equality.

Subject:
Algebra
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Algebraic Reasoning, Matching Equations To Problems
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students match equations such as 3x − 50 = 90 and 3(x − 50) = 90 to real-world and mathematical situations. They identify the steps needed to solve these equations.Key ConceptsStudents solve equations such as 3x − 50 = 90 by using first the addition property and then the multiplication property of equality.Students also solve equations such as 3(x − 50) = 90. Equations with parentheses were introduced in the Challenge Problem of Lesson 6. Now, in this lesson, students use two methods to solve the equation. First method: use the multiplication property of equality and then the addition property of equality; second method: use the distributive property to eliminate the parentheses, then use the addition property of equality, and then the multiplication property of equality.Goals and Learning ObjectivesMatch equations to problems.Solve two-step equations.

Subject:
Algebra
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Algebraic Reasoning, Peer Review
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students work with a partner to revise their work on the Self Check. Students work with their partner to do activities that involve using expressions and equations to solve problems.Key ConceptsStudents will use what they have learned so far in this unit about writing expressions as well as writing and using equations to solve problems.Goals and Learning ObjectivesUse expressions and equations to solve problems.

Subject:
Algebra
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Algebraic Reasoning, Reasonable Estimations & Exact Solutions
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students solve real-world problems by writing and solving equations. Students estimate the solution and determine if the estimate is reasonable before finding the exact solution. They write the solution as a complete sentence.Students complete a Self Check.Key ConceptsStudents solve real-world problems by first estimating the solution and assessing the reasonableness of the solution. Next, they write an equation to solve the problem and then use the properties of equality to solve the equation. Students write the solution to the problem as a complete sentence.Goals and Learning ObjectivesWrite equations to solve multi-step real-life problems involving rational numbers.Solve equations using addition, subtraction, multiplication, and division of rational numbers.Use estimations strategies to estimate the solution and determine if the estimate is reasonable.Write the solution as a complete sentence.

Subject:
Algebra
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Algebraic Reasoning, Self Check Exercise
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students work in pairs to critique and improve their work on the Self Check. Students complete a task similar to the Self Check with a partner.Key ConceptsTo critique and improve the task from the Self Check and to complete a similar task with a partner, students use what they know about solving inequalities, graphing their solutions, and relating the inequalities to a real-world situation.Goals and Learning ObjectivesSolve algebraic inequalities.Graph the solutions of inequalities using number lines.Write word problems that match algebraic inequalities.Interpret the solution of an inequality in terms of a word problem.

Subject:
Algebra
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Algebraic Reasoning, Using Arithmetic & Equations To Solve Problems
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students extend what they learned about solving equations in Grade 6. They learn to solve equations that require them to use both the addition and the multiplication properties of equality. They use what they know about solving equations such as 2x = 6 and x + 3 = 7 to solve equations such as 2x + 3 = 8. They connect solving problems using arithmetic to solving problems using equations. They solve equations containing both positive and negative rational numbers.Key ConceptsAddition property of equality: If a = b, then a + c = b + c.Multiplication property of equality: If a = b, then ac = bc.For any equation, add or subtract the same value from both sides of the equation and the equation will still be true.For any equation, multiply or divide both sides of the equation by the same value and the equation will still be true.In this lesson, students use both properties to solve equations. They then solve equations that contain both positive and negative rational numbers.Goals and Learning ObjectivesSolve equations using both the addition and multiplication properties of equality.Relate solving problems using arithmetic to solving problems using equations.Solve equations containing both positive and negative rational numbers.

Subject:
Algebra
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Working With Rational Numbers
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Working With Rational Numbers

Type of Unit: Concept

Prior Knowledge

Students should be able to:

Compare and order positive and negative numbers and place them on a number line.
Understand the concepts of opposites absolute value.

Lesson Flow

The unit begins with students using a balloon model to informally explore adding and subtracting integers. With the model, adding or removing heat represents adding or subtracting positive integers, and adding or removing weight represents adding or subtracting negative integers.

Students then move from the balloon model to a number line model for adding and subtracting integers, eventually extending the addition and subtraction rules from integers to all rational numbers. Number lines and multiplication patterns are used to find products of rational numbers. The relationship between multiplication and division is used to understand how to divide rational numbers. Properties of addition are briefly reviewed, then used to prove rules for addition, subtraction, multiplication, and division.

This unit includes problems with real-world contexts, formative assessment lessons, and Gallery problems.

Subject:
Algebra
Mathematics
Material Type:
Unit of Study
Provider:
Pearson
Math and Music
Read the Fine Print
Educational Use
Rating
0.0 stars

All the activities in this lesson are addition and subtraction based. It is not designed to introduce addition and subtraction, rather, to supplement and enrich lessons already being taught. This lesson is not designed to be completed in one sitting. It may be done throughout an entire addition and subtraction unit. These activities may be used as starter activities when introducing new math concepts, particularly those that relate to addition and subtraction.

Subject:
Mathematics
Numbers and Operations
Material Type:
Lesson Plan
Provider:
Utah Education Network
Date Added:
10/22/2013
Middle School Math - Grade 7 (Student's Edition)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A work in progress, CK-12's Math 7 explores foundational math concepts that will prepare students for Algebra and more advanced subjects. Material includes decimals, fractions, exponents, integers, percents, inequalities, and some basic geometry.

Subject:
Algebra
Functions
Geometry
Mathematics
Material Type:
Textbook
Provider:
CK-12 Foundation
Provider Set:
CK-12 FlexBook
Author:
Kershaw, Jen
Date Added:
10/04/2010
Modeling Dynamics and Control I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is the first of a two term sequence in modeling, analysis and control of dynamic systems. The various topics covered are as follows: mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices, analytical and computational solution of linear differential equations, state-determined systems, Laplace transforms, transfer functions, frequency response, Bode plots, vibrations, modal analysis, open- and closed-loop control, instability, time-domain controller design, and introduction to frequency-domain control design techniques. Case studies of engineering applications are also covered.

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Dubowsky, Steven
Trumper, David
Date Added:
02/01/2005
Open Resources for Community College Algebra
Unrestricted Use
CC BY
Rating
0.0 stars

Open Resources for Community College Algebra (ORCCA) is an open-source, openly-licensed textbook package (eBook, print, and online homework) for basic and intermediate algebra. At Portland Community College, Part 1 is used in MTH 60, Part 2 is used in MTH 65, and Part 3 is used in MTH 95.

Subject:
Algebra
Mathematics
Material Type:
Textbook
Provider:
Portland Community College
Author:
Alex Jordan
Ann Cary
Cara Lee
Carl Yao
Ralf Youtz
Ross Kouzes
Scot Leavitt
Date Added:
07/02/2019
Optimization Problems: Boomerangs
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This lesson unit is intended to help teachers assess how well students are able to: interpret a situation and represent the constraints and variables mathematically; select appropriate mathematical methods to use; explore the effects of systematically varying the constraints; interpret and evaluate the data generated and identify the optimum case, checking it for confirmation; and communicate their reasoning clearly.

Subject:
Mathematics
Measurement and Data
Material Type:
Assessment
Lesson Plan
Provider:
Shell Center for Mathematical Education
Provider Set:
Mathematics Assessment Project (MAP)
Date Added:
04/26/2013