In this strawberry DNA extraction lesson, students will explore the fundamental building …
In this strawberry DNA extraction lesson, students will explore the fundamental building blocks of life by isolating DNA from strawberries. Using simple household materials, they will follow a step-by-step procedure to break down the strawberry cells and release the DNA. This hands-on activity will allow students to see and touch DNA, making the abstract concept of genetic material tangible and engaging. Throughout the lesson, students will develop their scientific inquiry skills, including making observations, forming hypotheses, and discussing their findings.
This video segment from NOVA: "The Killer's Trail" investigates the potential for …
This video segment from NOVA: "The Killer's Trail" investigates the potential for DNA evidence to solve murder cases, even those from the distant past.
This course is an introduction to computational biology emphasizing the fundamentals of …
This course is an introduction to computational biology emphasizing the fundamentals of nucleic acid and protein sequence and structural analysis; it also includes an introduction to the analysis of complex biological systems. Topics covered in the course include principles and methods used for sequence alignment, motif finding, structural modeling, structure prediction and network modeling, as well as currently emerging research areas.
Since the discovery of the structure of the DNA double helix in …
Since the discovery of the structure of the DNA double helix in 1953 by Watson and Crick, the information on detailed molecular structures of DNA and RNA, namely, the foundation of genetic material, has expanded rapidly. This discovery is the beginning of the “Big Bang” of molecular biology and biotechnology. In this seminar, students discuss, from a historical perspective and current developments, the importance of pursuing the detailed structural basis of genetic materials.
The course covers basic concepts of biomedical engineering and their connection with …
The course covers basic concepts of biomedical engineering and their connection with the spectrum of human activity. It serves as an introduction to the fundamental science and engineering on which biomedical engineering is based. Case studies of drugs and medical products illustrate the product development-product testing cycle, patent protection, and FDA approval. It is designed for science and non-science majors.
In this 7th grade science lesson, students identify desirable traits in plants …
In this 7th grade science lesson, students identify desirable traits in plants and take cuttings from parent plants to facilitate asexual propagation and produce offspring with identical DNA.
Express yourself through your genes! See if you can generate and collect …
Express yourself through your genes! See if you can generate and collect three types of protein, then move on to explore the factors that affect protein synthesis in a cell.
Build a gene network! The lac operon is a set of genes …
Build a gene network! The lac operon is a set of genes which are responsible for the metabolism of lactose in some bacterial cells. Explore the effects of mutations within the lac operon by adding or removing genes from the DNA.
Build a gene network! The lac operon is a set of genes …
Build a gene network! The lac operon is a set of genes which are responsible for the metabolism of lactose in some bacterial cells. Explore the effects of mutations within the lac operon by adding or removing genes from the DNA.
The topic of this video module is genetic basis for variation among …
The topic of this video module is genetic basis for variation among humans. The main learning objective is that students will learn the genetic mechanisms that cause variation among humans (parents and children, brothers and sisters) and how to calculate the probability that two individuals will have an identical genetic makeup. This module does not require many prerequisites, only a general knowledge of DNA as the genetic material, as well as a knowledge of meiosis.
The goal of the Genetic Origins Program is to allow students to …
The goal of the Genetic Origins Program is to allow students to use their own DNA variations (polymorphisms) as a means to explore our shared genetic heritage and its implications for human health and society. Genetic Origins focuses on two types of DNA variations: an Alu insertion polymorphism on chromosome 16 (PV92) and single nucleotide polymorphisms (SNPs) in the control region of the mitochondrial (mt) chromosome. With two alleles and three genotypes, PV92 is a simple genetic system that illustrates Mendelian inheritance on a molecular level. PV92 data is readily analyzed using population statistics. The mt control region is one of the simplest regions of human DNA to sequence. With a high mutation rate, the mt control region is the "classical" system for studying human and primate evolution. The Genetic Origins site and linked Bioservers site have all the information needed for students to perform the Alu and mt DNA experiments and analyze the results - including online protocols, reagents, animations and videos explaining key concepts, and database tools.
This course discusses the principles of genetics with application to the study …
This course discusses the principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. The topics include: structure and function of genes, chromosomes and genomes, biological variation resulting from recombination, mutation, and selection, population genetics, use of genetic methods to analyze protein function, gene regulation and inherited disease.
In this video collaboration from Khan Academy and 23andMe, you'll learn about …
In this video collaboration from Khan Academy and 23andMe, you'll learn about the variations in human DNA called SNPs, and how they can be used to understand relationships between people.
In this video collaboration from Khan Academy and 23andMe, you'll learn about …
In this video collaboration from Khan Academy and 23andMe, you'll learn about the variations in human DNA called SNPs, and how they can be used to understand relationships between people.
In this video collaboration from Khan Academy and 23andMe, you'll learn how …
In this video collaboration from Khan Academy and 23andMe, you'll learn how your observable traits, or phenotypes, are the result of interactions between your genes and environment.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.