This performance assessment aligns with NGSS Performance Expectation K.PS2.2 and is intended …
This performance assessment aligns with NGSS Performance Expectation K.PS2.2 and is intended to be used as an interim assessment. These assessments can either be used summatively, as an end of learning activity, or formatively, utilizing student responses to identify next instructional steps.
This performance assessment aligns with NGSS Performance Expectation 2.ESS2.2 and is intended …
This performance assessment aligns with NGSS Performance Expectation 2.ESS2.2 and is intended to be used as an interim assessment. These assessments can either be used summatively, as an end of learning activity, or formatively, utilizing student responses to identify next instructional steps.
This performance assessment aligns with NGSS Performance Expectation 2.PS1.2 and is intended …
This performance assessment aligns with NGSS Performance Expectation 2.PS1.2 and is intended to be used as an interim assessment. These assessments can either be used summatively, as an end of learning activity, or formatively, utilizing student responses to identify next instructional steps.
This performance assessment aligns with NGSS Performance Expectation 5.PS1.2 and is intended …
This performance assessment aligns with NGSS Performance Expectation 5.PS1.2 and is intended to be used as an interim assessment. These assessments can either be used summatively, as an end of learning activity, or formatively, utilizing student responses to identify next instructional steps.
The content of these website pages is a compilation of STEAM lesson …
The content of these website pages is a compilation of STEAM lesson plans developed by elementary school teachers from throughout Oregon. They are arranged by grade level and indicate the author of each.
How can we design more reliable systems to meet our communities’ energy …
How can we design more reliable systems to meet our communities’ energy needs? This unit is designed to introduce students to the concept of energy transfer in a relevant and grounded context: the Texas power crisis of February 2021. Students read articles and wonder about the complex social, environmental, and physical realities that led to such a crisis. They figure out how energy transfers between systems from a generator to our communities, and what makes an energy source reliable. This allows the class to model and explain what happened in Texas at multiple scales, from the electrons in the wires to the power companies making difficult decisions to maintain stability. Students consider engineering tradeoffs, criteria, and constraints inherent in making decisions about our energy systems, and apply them in a culminating task: design a reliable energy solution that meets our communities' needs, as articulated by interviews with friends and family members. The task is designed to give students the tools to speak up in their local and global community for a better energy future, one that aligns with their own values, and those of their families.
Patterns Biology is the culminating course in the 3-year high school Patterns …
Patterns Biology is the culminating course in the 3-year high school Patterns Science sequence. Patterns Biology focuses on three-dimensional (3D) learning through culturally responsive, phenomena-based storylines that intertwine the disciplinary core ideas of biology with the scientific and engineering practices and crosscutting concepts as described in the Next Generation Science Standards (NGSS).
The Patterns High School Science Sequence (https://hsscience4all.org/) is a three year course pathway and curriculum aligned to the Next Generation Science Standards (NGSS).
Each course utilizes: - Common instructional strategies - Real world phenomena - Design challenges to engage students and support their learning.
For more information, contact us at info@pdxstem.org.
The curriculum is a combination of teacher-generated and curated open-content materials. The Teacher-generated materials are shared freely under a Attribution-NonCommercial-Sharealike Creative Commons License.
Patterns Chemistry is an instructional resource for a year-long high school introductory …
Patterns Chemistry is an instructional resource for a year-long high school introductory chemistry course. It meets many of the physical science standards from the Next Generation Science Standards, as well as some earth science standards.
The Patterns High School Science Sequence (https://hsscience4all.org/) is a three year course pathway and curriculum aligned to the Next Generation Science Standards (NGSS).
Each course utilizes: - Common instructional strategies - Real world phenomena - Design challenges to engage students and support their learning.
For more information, contact us at info@pdxstem.org.
The curriculum is a combination of teacher-generated and curated open-content materials. The Teacher-generated materials are shared freely under a Attribution-NonCommercial-Sharealike Creative Commons License.
Patterns Physics is the initial course in the 3-year high school Patterns …
Patterns Physics is the initial course in the 3-year high school Patterns Science sequence. Patterns Physics focuses on three-dimensional (3D) learning through culturally responsive, phenomena-based storylines that intertwine the disciplinary core ideas of physics and earth science with the scientific and engineering practices and crosscutting concepts as described in the Next Generation Science Standards (NGSS).
The Patterns High School Science Sequence (https://hsscience4all.org/) is a three year course pathway and curriculum aligned to the Next Generation Science Standards (NGSS).
Each course utilizes: - Common instructional strategies - Real world phenomena - Design challenges to engage students and support their learning.
For more information, contact us at info@pdxstem.org.
The curriculum is a combination of teacher-generated and curated open-content materials. The Teacher-generated materials are shared freely under a Attribution-NonCommercial-Sharealike Creative Commons License.
Elementary school lessons utilize local phenomenon and are organized by grade level. …
Elementary school lessons utilize local phenomenon and are organized by grade level. By organizing instruction around local phenomenon, students are provided with a reason to learn shifting the focus from learning about a disconnected topic to figuring out why or how something happens. #Going 3D with GRC
Elementary school lessons utilize local phenomenon and are organized by grade level. …
Elementary school lessons utilize local phenomenon and are organized by grade level. By organizing instruction around local phenomenon, students are provided with a reason to learn shifting the focus from learning about a disconnected topic to figuring out why or how something happens. #Going 3D with GRC
Instructional sequences are more coherent when students investigate compelling natural phenomena (in …
Instructional sequences are more coherent when students investigate compelling natural phenomena (in science) or work on meaningful design problems (in engineering) by engaging in the science and engineering practices. We refer to these phenomena and design problems here as ‘anchors.’ What makes for a good phenomenon to anchor an investigation?
Watershed Awareness using Technology and Environmental Research for Sustainability (WATERS) The WATERS …
Watershed Awareness using Technology and Environmental Research for Sustainability (WATERS)
The WATERS project is developing and researching a student-centered, place-based, and accessible curriculum for teaching watershed concepts and water career awareness for students in the middle grades. This 10-lesson unit includes online, classroom, and field activities. Students use a professional-grade online GIS modeling resource, simulations, sensors, and other interactive resources to collect environmental data and analyze their local watershed issues. The WATERS project is paving a path to increased access to research-based, open access curricula that hold the potential to significantly increase awareness of and engagement with watershed concepts and career pathways in learners nationwide.
This material is licensed under a Creative Commons Attribution 4.0 License. The software is licensed under Simplified BSD, MIT or Apache 2.0 licenses. Please provide attribution to the Concord Consortium and the URL https://concord.org.
Watershed Awareness using Technology and Environmental Research for Sustainability (WATERS) The WATERS …
Watershed Awareness using Technology and Environmental Research for Sustainability (WATERS)
The WATERS project is developing and researching a student-centered, place-based, and accessible curriculum for teaching watershed concepts and water career awareness for students in the middle grades. This 10-lesson unit includes online, classroom, and field activities. Students use a professional-grade online GIS modeling resource, simulations, sensors, and other interactive resources to collect environmental data and analyze their local watershed issues. The WATERS project is paving a path to increased access to research-based, open access curricula that hold the potential to significantly increase awareness of and engagement with watershed concepts and career pathways in learners nationwide.
This material is licensed under a Creative Commons Attribution 4.0 License. The software is licensed under Simplified BSD, MIT or Apache 2.0 licenses. Please provide attribution to the Concord Consortium and the URL https://concord.org.
This performance assessment aligns with NGSS Performance Expectation 1.LS3.1 and is intended …
This performance assessment aligns with NGSS Performance Expectation 1.LS3.1 and is intended to be used as an interim assessment. These assessments can either be used summatively, as an end of learning activity, or formatively, utilizing student responses to identify next instructional steps.
This self-guided course is designed to guide administrators, particularly those in K-5 …
This self-guided course is designed to guide administrators, particularly those in K-5 schools, in thinking about science education in their buildings and to provide background on and fundamentals regarding the Oregon Science Standards (also referred to as NGSS and Next Generation Science Standards). Additionally, this short course will inform participants about the instructional shifts required for Oregon Science Standards/NGSS three-dimensional teaching and learning, guide the development of a plan to support science teaching and learning, and highlight the essential role of equity and inclusion in Oregon's science standards.
Elementary school lessons utilize local phenomenon and are organized by grade level. …
Elementary school lessons utilize local phenomenon and are organized by grade level. By organizing instruction around local phenomenon, students are provided with a reason to learn shifting the focus from learning about a disconnected topic to figuring out why or how something happens. #Going 3D with GRC
Watershed Awareness using Technology and Environmental Research for Sustainability (WATERS) The WATERS …
Watershed Awareness using Technology and Environmental Research for Sustainability (WATERS)
The WATERS project is developing and researching a student-centered, place-based, and accessible curriculum for teaching watershed concepts and water career awareness for students in the middle grades. This 10-lesson unit includes online, classroom, and field activities. Students use a professional-grade online GIS modeling resource, simulations, sensors, and other interactive resources to collect environmental data and analyze their local watershed issues. The WATERS project is paving a path to increased access to research-based, open access curricula that hold the potential to significantly increase awareness of and engagement with watershed concepts and career pathways in learners nationwide.
This material is licensed under a Creative Commons Attribution 4.0 License. The software is licensed under Simplified BSD, MIT or Apache 2.0 licenses. Please provide attribution to the Concord Consortium and the URL https://concord.org.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.