Copper is an element that is essential to our technology and to …
Copper is an element that is essential to our technology and to our standard of living. Commonly, the copper is extracted from a variety of copper-bearing minerals that occur in veins. These fossilized fluid pathways record a complex set of geologic processes with non-linear couplings that are the products of hydrothermal activity associated with igneous intrusions (e.g. heat transport, mechanical fracture, mineral precipitation, permeability changes). By carefully examining a rock slab and its mineralogy, one can decipher the series of interrelated processes and their resultant impact on the final product.
Students set about to determine the relative age of veins by visual examination of the rock slab provided. Several generations of veins are recorded by different colors representing different minerals. Using cross-cutting relationships, they list the veins from oldest to youngest. Based on their color, they determine the sequence of minerals that fill veins. This provides an opportunity to review why color can be used to identify some minerals but not others. Once minerals are identified, their ideal chemical formula allows the percent copper in the mineral to be determined as well as the additional elements that must be present to form the mineral. The consequent change in mineral chemistry can be linked to the alterations in fluids flowing through the fractures by analysis of fluid-mineral equilibria on activity-activity (a-a) diagrams. For the more advanced classes, relevant thermodynamic data can be provided and students can write hydrolysis reactions and calculate the (a-a) diagram themselves.
Interpretation of the geologic history begins with the matrix and initial conditions and follows through rock fracture, fluid flow, mineral precipitation, evolving fluid composition, fracture sealing, pore-fluid pressure buildup, fracture, precipitation, etc. in a series of feedbacks. A feedback diagram can be provided and used as a base-map for interpretation not only of the sequence but changes to each reservoir, or students can be asked to draw the series of events and their reservoirs with the mechanisms of change. In the end, students understand the complex series of geologic processes that must come together in space and time to produce an ore-deposit that can be mined for our use. They also wrestle with the complications of reading the rock record and with the ambiguity of interpreting the interaction of various mechanisms that control the final product.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Spreadsheets Across the Curriculum/Geology of National Parks module. Students calculate the haze …
Spreadsheets Across the Curriculum/Geology of National Parks module. Students calculate the haze index and standard visual range from concentrations of particulate matter.
Spreadsheets Across the Curriculum/Geology of National Parks module. Students calculate the haze …
Spreadsheets Across the Curriculum/Geology of National Parks module. Students calculate the haze index and standard visual range from concentrations of particulate matter.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This three-panel figure is an infographic showing how carbon and oxygen isotope …
This three-panel figure is an infographic showing how carbon and oxygen isotope ratios, temperature, and carbonate sediments have changed during the Palaeocene-Eocene Thermal Maximum. The figure caption provides sources to scientific articles from which this data was derived. A graphic visualization from the Intergovernmental Panel on Climate Change shows the rapid decrease in carbon isotope ratios that is indicative of a large increase in the atmospheric greenhouse gases CO2 and CH4, which was coincident with approximately 5C of global warming.
This activity will help students to explore characteristics of microbes that live …
This activity will help students to explore characteristics of microbes that live in the deep sea. This activity can be conducted as a jigsaw or research project, and can be used with face-to-face, remote, and hybrid students.
Provenance: Beverly Owens, Cleveland Early College High School Reuse: This item is offered under a Creative Commons Attribution-NonCommercial-ShareAlike license http://creativecommons.org/licenses/by-nc-sa/3.0/ You may reuse this item for non-commercial purposes as long as you provide attribution and offer any derivative works under a similar license.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This activity is a Google Slide playlist that will introduce students to …
This activity is a Google Slide playlist that will introduce students to microbes that can be found in deep sea sediments, and what roles they play in their environment. This playlist is suitable for use in remote, hybrid, or in-person instruction and can easily be added to a Learning Management System.
Provenance: Molly Ludwick, Kings Mountain Middle School Reuse: This item is offered under a Creative Commons Attribution-NonCommercial-ShareAlike license http://creativecommons.org/licenses/by-nc-sa/3.0/ You may reuse this item for non-commercial purposes as long as you provide attribution and offer any derivative works under a similar license.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This online gallery of photos, illustrations, and videos provides a snapshot of …
This online gallery of photos, illustrations, and videos provides a snapshot of deep sea vents and the ancient forms of life that can be found within them. Transcripts of the videos are provided, and the photos and illustrations are accompanied by explanatory texts.
Appreciating the depth of time is a bit like trying to understand …
Appreciating the depth of time is a bit like trying to understand the national debt -- it is easy to rattle off the number, but more difficult to appreciate what it means. Several popular writers have tried to convey the depth of time by incoporating one major (and important!) signpost in their scales: the first historical records of humans on the planet. Mark Twain famously referred to human history as the "skin of paint" at the summit of the Eiffel Tower, and John McPhee the "stroke of a medium-grained nail file" on the middle nail of an outstretched arm.
Eiffel Tower
Reuse: This item is offered under a Creative Commons Attribution-NonCommercial-ShareAlike license http://creativecommons.org/licenses/by-nc-sa/3.0/ You may reuse this item for non-commercial purposes as long as you provide attribution and offer any derivative works under a similar license.
Vitruvian man
Reuse: This item is offered under a Creative Commons Attribution-NonCommercial-ShareAlike license http://creativecommons.org/licenses/by-nc-sa/3.0/ You may reuse this item for non-commercial purposes as long as you provide attribution and offer any derivative works under a similar license.
I would like for you to evaluate these two metaphors for accuracy. How close were Twain and McPhee to appropriately contexualizing human existence in geological time? Use the pdf's of Twain's and McPhee's prose and what you know from class lectures to accomplish the following goals.
(1) Evaluate whether McPhee's and Twain's metaphors are appropriately scaled -- i.e., do their metaphors correctly depict the age of the earth relative to human history? How about if we incorporate the fossil record of humans?
(2) Create your own appropriately scaled metaphor. Add in at least three other "signposts", either biological or geological, into your metaphor and explain why you chose them.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This activity is designed to introduce students to the way in which …
This activity is designed to introduce students to the way in which thermohaline circulation and the biological pump influence the distribution of nutrients, oxygen, carbon, and radiocarbon in the Atlantic vs. Pacific Oceans.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This NASA animation on land cover change zooms into Rondonia, Brazil. It …
This NASA animation on land cover change zooms into Rondonia, Brazil. It starts with a Landsat satellite image taken in 1975 and dissolves into a second image of the same region taken in 2009 that illustrates a significant amount of land use change.
Students match microstructures to the deformation mechanisms by which they form; compare …
Students match microstructures to the deformation mechanisms by which they form; compare pairs of photomicrographs chosen to highlight key differences between some common microstructures; and complete a self-quiz in which they identify microstructures and infer deformation mechanisms from photomicrographs.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This assignment addresses cultural sustainability by asking students to go beyond distinguishing …
This assignment addresses cultural sustainability by asking students to go beyond distinguishing between five subsistence strategies to examining the impact of globalization on diet and culture.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students are given 4 hypothetical stratigraphic columns (each roughly 30 m thick) …
Students are given 4 hypothetical stratigraphic columns (each roughly 30 m thick) of deltaic deposits, 3 base maps with section locations, and a map scale. Students subdivide the stratigraphic units into subfacies and interpret subenvironments (delta plain, delta front, prodelta, marine) and describe/list features used to make these interpretations. Using depositional interpretations, 3 bentonite marker beds, and paleocurrent information, students draw 3 successive paleogeographic maps of the region showing delta migration through time.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
A demonstration (with full class participation) to illustrate radioactive decay by flipping …
A demonstration (with full class participation) to illustrate radioactive decay by flipping coins. Shows students visually the concepts of exponential decay, half-life and randomness. Works best in large classes -- the more people, the better.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
One of the great challenges in teaching undergraduates is finding ways to …
One of the great challenges in teaching undergraduates is finding ways to get them to apply knowledge or skills learned in one class to problems encountered in subsequent classes. Case in point: the use of algebra, trig, and even rudimentary calculus in geology classes! This activity presents practical ways we can use to build student confidence in their ability to peer into the meaning of the equations they encounter in sedimentary geology. These techniques include: (1) Surgical Strike Reviews -- 5 to 10-minute review of relevant math principles at the beginning of the appropriate lecture, (2) Unit Analyses -- assigning fundamental units of Mass, Length, and Time to test whether an equation has been derived correctly or to explore the meaning of derivative units of measure that may be unfamiliar to students, and (3) Perturbation Interrogation -- asking students to identify whether the quantity of interest described by an equation will increase or decrease when individual components of the equation increase or decrease.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this activity, students are introduced to tree rings by examining a …
In this activity, students are introduced to tree rings by examining a cross section of a tree, also known as a 'tree cookie.' They discover how tree age can be determined by studying the rings and how ring thickness can be used to deduce times of optimal growing conditions. Next, they investigate simulated tree rings applying the scientific method to explore how climatic conditions varied over time.
In this video segment adapted from Navajo Technical College, meet a dendroclimatologist …
In this video segment adapted from Navajo Technical College, meet a dendroclimatologist who studies the relationship between precipitation and tree growth in the Navajo Nation.
This 3-hour hands-on guided-discovery lab activity teaches students the concepts of density, …
This 3-hour hands-on guided-discovery lab activity teaches students the concepts of density, buoyancy, thermal expansion and convection.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this first part of a two-part lab activity, students use triple …
In this first part of a two-part lab activity, students use triple balance beams and graduated cylinders to take measurements and calculate the densities of several common, irregularly shaped objects with the purpose to resolve confusion about mass and density. After this activity, conduct the associated Density Column Lab - Part 2 activity before presenting the associated Density & Miscibility lesson for discussion about concepts that explain what students have observed.
Concluding a two-part lab activity, students use triple balance beams and graduated …
Concluding a two-part lab activity, students use triple balance beams and graduated cylinders to take measurements and calculate densities of several household liquids and compare them to the densities of irregularly shaped objects (as determined in Part 1). Then they create density columns with the three liquids and four solid items to test their calculations and predictions of the different densities. Once their density columns are complete, students determine the effect of adding detergent to the columns. After this activity, present the associated Density & Miscibility lesson for a discussion about why the column layers do not mix.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.