With the help of two climate experts, this video discusses how the …
With the help of two climate experts, this video discusses how the social cost of carbon is calculated, how it should, perhaps, be calculated, and why the effort to quantify this value is necessary despite its imperfections.
Students learn about the daily and annual cycles of solar angles used …
Students learn about the daily and annual cycles of solar angles used in power calculations to maximize photovoltaic power generation. They gain an overview of solar tracking systems that improve PV panel efficiency by following the sun through the sky.
In this video from DragonflyTV, follow the investigation of Isaac and Anjali …
In this video from DragonflyTV, follow the investigation of Isaac and Anjali as they record, measure, and analyze data about how the Sun's position in the sky affects a solar-powered car's speed.
Advanced semiconductor devices are a new source of energy for the 21st …
Advanced semiconductor devices are a new source of energy for the 21st century, delivering electricity directly from sunlight. Suitable semiconductor materials, device physics, and fabrication technologies for solar cells are presented in this course. The guidelines for design of a complete solar cell system for household application are explained. Cost aspects, market development, and the application areas of solar cells are presented.
This activity comes at the beginning of a sequence of activities in …
This activity comes at the beginning of a sequence of activities in an energy module. Students observe the transfer of solar energy to different appliances with a solar cell and then they investigate the effect of using different solar sources to supply energy to appliances.
In this course participants will learn how to turn solar cells into …
In this course participants will learn how to turn solar cells into full modules; and how to apply full modules to full photovoltaic systems.
The course will widely cover the design of photovoltaic systems, such as utility scale solar farms or residential scale systems (both on and off the grid). You will learn about the function and operation of various components including inverters, batteries, DC-DC converters and their interaction with both the modules and the grid.
After learning about the components, learners will be able to correctly apply them during main design steps taken when planning a real PV installation with excellent performance and reliability.
Through modelling, you will gain a deeper understanding of PV systems performance for different solar energy applications, and proficiency in estimating the energy yield of a client’s potential system.
This course is part of the Solar Energy Engineering MicroMasters Program designed to cover all physics and engineering aspects of photovoltaics: photovoltaic energy conversion, technologies and systems.
This video segment from 'What's Up in the Environment,' shares how an …
This video segment from 'What's Up in the Environment,' shares how an entire home can be constructed using green energy sources (solar and geothermal energy). Video is narrated by young boy whose father is the chief engineer on the project.
In this video segment from NOVA's Saved By the Sun hour-long video, …
In this video segment from NOVA's Saved By the Sun hour-long video, students learn about photovoltaics and see how two families are using solar technologies in their homes. The video introduces the ideas of state incentives and net metering benefits.
In this activity, students learn how engineers use solar energy to heat …
In this activity, students learn how engineers use solar energy to heat buildings by investigating the thermal storage properties of some common materials: sand, salt, water and shredded paper. Students then evaluate the usefulness of each material as a thermal storage material to be used as the thermal mass in a passive solar building.
In this 'Energy Education for the 21st Century' design challenge, students construct …
In this 'Energy Education for the 21st Century' design challenge, students construct and evaluate a solar-powered model car. Students utilize the design process and undergo review by their peers to select an optimal gear ratio and components for their car. As a culminating activity, students compete in a Solar Sprint race modeled after the National Renewable Energy Laboratory's Junior Solar Sprint competition.
Are you interested in Solar Energy? Solar Resource Assessment and Economics explores …
Are you interested in Solar Energy? Solar Resource Assessment and Economics explores the methods, economic criteria, and meteorological background for assessing the solar resource with respect to project development of solar energy conversion systems for stakeholders in a given locale. It provides students with an in-depth exploration of the physical qualities of the solar resource, estimation of the fractional contributions of irradiance to total demand, and economic assessment of the solar resource. The course utilizes real data sets and resources to provide students context for the drivers, frameworks, and requirements of solar energy evaluation.
Working as if they were engineers, students design and construct model solar …
Working as if they were engineers, students design and construct model solar sails made of aluminum foil to move cardboard tube satellites through “space” on a string. Working in teams, they follow the engineering design thinking steps—empathize, define, ideate, prototype, test, redesign—to design and test small-scale solar sails for satellites and space probes. During the process, learn about Newton’s laws of motion and the transfer of energy from wave energy to mechanical energy. A student activity worksheet is provided.
This activity explores solar energy and the difference between passive and active …
This activity explores solar energy and the difference between passive and active solar design. Students will design and build a solar structure in order to test how radiation and conduction distribute heat.
Student teams design and build solar water heating devices that mimic those …
Student teams design and build solar water heating devices that mimic those used in residences to capture energy in the form of solar radiation and convert it to thermal energy. In this activity, students gain a better understanding of the three different types of heat transfer, each of which plays a role in the solar water heater design. Once the model devices are constructed, students perform efficiency calculations and compare designs.
In this activity, students will determine whether there is a statistically significant …
In this activity, students will determine whether there is a statistically significant difference in the number of watts of power produced on individual solar panels at Bryn Mawr College.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Solving Complex Problems provides an opportunity for entering freshmen to gain first-hand …
Solving Complex Problems provides an opportunity for entering freshmen to gain first-hand experience with working as part of a team to develop effective approaches to complex problems in Earth system science and engineering that do not have straightforward solutions. The subject includes training in a variety of skills, ranging from library research to Web Design. Each year’s course explores a different problem in detail through the study of complimentary case histories and the development of creative solution strategies. Beginning in 2000 as an educational experiment sponsored by MIT’s Committee on the Undergraduate Program, and receiving major financial support from the Alex and Britt d’Arbeloff Fund for Excellence in MIT Education, the subject is designed to enhance the first-semester freshman experience by helping students develop contexts for other subjects in the sciences and humanities, and by helping them to establish learning communities that include upperclassmen, faculty, MIT alumni, and professionals from many walks of life. In Fall 2003, students from the Class of 2007 were challenged with “Mission 2007”:
To design the most “environmentally correct” strategy for oil exploration and extraction in the Arctic National Wildlife Refuge (ANWR); and To perform a cost-benefit analysis in order to evaluate whether or not the hydrocarbon resources that might be extracted from beneath ANWR are worth the environmental damage that might result from the process.
The culminating energy project is introduced and the technical problem solving process …
The culminating energy project is introduced and the technical problem solving process is applied to get students started on the project. By the end of the class, students should have a good perspective on what they have already learned and what they still need to learn to complete the project.
In this project, students will use knowledge of electricity and electromagnetism to …
In this project, students will use knowledge of electricity and electromagnetism to collaboratively design and test a model of a magnetic recycling sorter. They will evaluate the performance of their models and propose further modifications based on the output of their magnetic device measured in mT using a Vernier probe. They will also physically test their magnets on a model of a conveyor belt containing recyclable items. Students will track their data from both tests, with the ultimate goal of creating the strongest and most effective magnet with given materials. Finally, students will present their findings and proposed final design to peers and community partners involved in the recycling industry. The entire process takes about 6 weeks. The unit is a great fit for standards within energy and engineering & design.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.