This course covers concepts and techniques for the design and implementation of …
This course covers concepts and techniques for the design and implementation of large software systems that can be adapted to uses not anticipated by the designer. Applications include compilers, computer-algebra systems, deductive systems, and some artificial intelligence applications. Topics include combinators, generic operations, pattern matching, pattern-directed invocation, rule systems, backtracking, dependencies, indeterminacy, memoization, constraint propagation, and incremental refinement. Substantial weekly programming assignments are an integral part of the subject. There will be extensive programming assignments, using MIT/GNU Scheme. Students should have significant programming experience in Scheme, Common Lisp, Haskell, CAML or some other “functional” language.
This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic …
This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem.
The major focus of 16.13 is on boundary layers, and boundary layer …
The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included.
This course introduces students to a quantitative approach to studying the problems …
This course introduces students to a quantitative approach to studying the problems of physiological adaptation in altered environments, especially microgravity and partial gravity environments. The course curriculum starts with an Introduction and Selected Topics, which provides background information on the physiological problems associated with human space flight, as well as reviewing terminology and key engineering concepts. Then curriculum modules on Bone Mechanics, Muscle Mechanics, Musculoskeletal Dynamics and Control, and the Cardiovascular System are presented. These modules start out with qualitative and biological information regarding the system and its adaptation, and progresses to a quantitative endpoint in which engineering methods are used to analyze specific problems and countermeasures. Additional course curriculum focuses on interdisciplinary topics, suggestions include extravehicular activity and life support. The final module consists of student term project work.
This undergraduate course builds upon the dynamics content of Unified Engineering, a …
This undergraduate course builds upon the dynamics content of Unified Engineering, a sophomore course taught in the Department of Aeronautics and Astronautics at MIT. Vector kinematics are applied to translation and rotation of rigid bodies. Newtonian and Lagrangian methods are used to formulate and solve equations of motion. Additional numerical methods are presented for solving rigid body dynamics problems. Examples and problems describe applications to aircraft flight dynamics and spacecraft attitude dynamics.
This course meets weekly to discuss recent aerospace history and current events, …
This course meets weekly to discuss recent aerospace history and current events, in order to understand how they are responsible for the state of the aerospace industry. With invited subject matter experts participating in nearly every session, students have an opportunity to hone their insight through truly informed discussion. The aim of the course is to prepare junior and senior level students for their first industry experiences.
This course studies the relations of affect to cognition and behavior, feeling …
This course studies the relations of affect to cognition and behavior, feeling to thinking and acting, and values to beliefs and practices. These connections will be considered at the psychological level of organization and in terms of their neurobiological and sociocultural counterparts.
This course instructs students on how to develop technologies that help people …
This course instructs students on how to develop technologies that help people measure and communicate emotion, that respectfully read and that intelligently respond to emotion, and have internal mechanisms inspired by the useful roles emotions play.
This course is an investigation of affective priming and creation of rigorously …
This course is an investigation of affective priming and creation of rigorously counterbalanced, fully computerized testing paradigm. Includes background readings, study design, counterbalancing, study execution, data analysis, presentation of poster, and final paper.
This course considers how, despite its immense diversity, Africa continues to hold …
This course considers how, despite its immense diversity, Africa continues to hold purchase as both a geographical entity and meaningful knowledge category. It examines the relationship between articulations of “Africa” and projects like European imperialism, developments in the biological sciences, African de-colonization and state-building, and the imagining of the planet’s future. Readings in anthropology and history are organized around five themes: space and place, race, representation, self-determination, and time.
Sometime after 1492, the concept of the New World or America came …
Sometime after 1492, the concept of the New World or America came into being, and this concept appeared differently - as an experience or an idea - for different people and in different places. This semester, we will read three groups of texts: first, participant accounts of contact between native Americans and French or English speaking Europeans, both in North America and in the Caribbean and Brazil; second, transformations of these documents into literary works by contemporaries; third, modern texts which take these earlier materials as a point of departure for rethinking the experience and aftermath of contact. The reading will allow us to compare perspectives across time and space, across the cultural geographies of religion, nation and ethnicity, and finally across a range of genres - reports, captivity narratives, essays, novels, poetry, drama, and film. Some of the earlier authors we will read are Michel Montaigne, William Shakespeare, Jean de Léry, Daniel Defoe and Mary Rowlandson; more recent authors include Derek Walcott, and J. M. Coetzee.
This course asks students to consider the ways in which social theorists, …
This course asks students to consider the ways in which social theorists, institutional reformers, and political revolutionaries in the 17th through 19th centuries seized upon insights developed in the natural sciences and mathematics to change themselves and the society in which they lived. Students study trials, art, literature and music to understand developments in Europe and its colonies in these two centuries. Covers works by Newton, Locke, Voltaire, Rousseau, Marx, and Darwin.
This course introduces the various aspects of present and future Air Traffic …
This course introduces the various aspects of present and future Air Traffic Control systems. Among the topics in the present system that we will discuss are the systems-analysis approach to problems of capacity and safety, surveillance, including the National Airspace System and Automated Terminal Radar Systems, navigation subsystem technology, aircraft guidance and control, communications, collision avoidance systems and sequencing and spacing in terminal areas. The class will then talk about future directions and development and have a critical discussion of past proposals and of probable future problem areas.
This course addresses the architecting of air transportation systems. The focus is on …
This course addresses the architecting of air transportation systems. The focus is on the conceptual phase of product definition, including technical, economic, market, environmental, regulatory, legal, manufacturing, and societal factors. It centers on a realistic system case study and includes a number of lectures from industry and government. Past examples include: the Very Large Transport Aircraft, a Supersonic Business Jet, and a Next Generation Cargo System. The course identifies the critical system level issues and analyzes them in depth via student team projects and individual assignments. The overall goal of the semester is to produce a business plan and a system specifications document that can be used to assess candidate systems.
This class includes a brief review of applied aerodynamics and modern approaches …
This class includes a brief review of applied aerodynamics and modern approaches in aircraft stability and control. Topics covered include static stability and trim; stability derivatives and characteristic longitudinal and lateral-directional motions; and physical effects of the wing, fuselage, and tail on aircraft motion. Control methods and systems are discussed, with emphasis on flight vehicle stabilization by classical and modern control techniques; time and frequency domain analysis of control system performance; and human-pilot models and pilot-in-the-loop controls with applications. Other topics covered include V/STOL stability, dynamics, and control during transition from hover to forward flight; parameter sensitivity; and handling quality analysis of aircraft through variable flight conditions. There will be a brief discussion of motion at high angles-of-attack, roll coupling, and other nonlinear flight regimes.
Aircraft are complex products comprised of many subsystems which must meet demanding …
Aircraft are complex products comprised of many subsystems which must meet demanding customer and operational lifecycle value requirements. This course adopts a holistic view of the aircraft as a system, covering: basic systems engineering; cost and weight estimation; basic aircraft performance; safety and reliability; lifecycle topics; aircraft subsystems; risk analysis and management; and system realization. Small student teams “retrospectively analyze” an existing aircraft covering: key design drivers and decisions; aircraft attributes and subsystems; and operational experience. Finally, the student teams deliver oral and written versions of the case study.
16.885J offers a holistic view of the aircraft as a system, covering: …
16.885J offers a holistic view of the aircraft as a system, covering: basic systems engineering; cost and weight estimation; basic aircraft performance; safety and reliability; lifecycle topics; aircraft subsystems; risk analysis and management; and system realization. Small student teams retrospectively analyze an existing aircraft covering: key design drivers and decisions; aircraft attributes and subsystems; and operational experience. Oral and written versions of the case study are delivered. For the Fall 2005 term, the class focuses on a systems engineering analysis of the Space Shuttle. It offers study of both design and operations of the shuttle, with frequent lectures by outside experts. Students choose specific shuttle systems for detailed analysis and develop new subsystem designs using state of the art technology.
This course provides an overview of airline management decision processes with a …
This course provides an overview of airline management decision processes with a focus on economic issues and their relationship to operations planning models and decision support tools. It emphasizes the application of economic models of demand, pricing, costs, and supply to airline markets and networks, and it examines industry practice and emerging methods for fleet planning, route network design, scheduling, pricing and revenue management.
Explores a variety of models and optimization techniques for the solution of …
Explores a variety of models and optimization techniques for the solution of airline schedule planning and operations problems. Schedule design, fleet assignment, aircraft maintenance routing, crew scheduling, passenger mix, and other topics are covered. Recent models and algorithms addressing issues of model integration, robustness, and operations recovery are introduced. Modeling and solution techniques designed specifically for large-scale problems, and state-of-the-art applications of these techniques to airline problems are detailed.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.