Updating search results...

Search Resources

186 Results

View
Selected filters:
  • WY.SCI.MS.ETS1.1 - Define the criteria and constraints of a design problem with sufficien...
  • WY.SCI.MS.ETS1.1 - Define the criteria and constraints of a design problem with sufficien...
Future Flights!
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson is an exciting conclusion to the airplanes unit that encourages students to think creatively. After a review of the concepts learned, students will design their own flying machine based on their knowledge of the forces involved in flight, the properties of available materials, and the ways in which their flying machine could benefit society. Students will also learn how the brainstorming process helps in creative thinking and inventing and that scientists and engineers use this technique to come up with new products or modify and improve exiting products.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
09/18/2014
Give me a hand! Bioengineering for Prosthetic Limbs
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

 Students extend their knowledge of the skeletal system to biomedical engineering design, specifically the concept of artificial limbs and joints. Students relate the skeleton as a structural system, focusing on the hand as structural necessity. They learn about the design considerations involved in the creation of artificial limbs, including materials. This lesson plan was developed for emergent bilingual students who are intermediate or advanced in their English language development skills. This lesson is adapted from the following resources, "Engineering Bones" and "Prosthetic Party," on the TeachEngineering Digital Library: https://www.teachengineering.org/lessons/view/cub_biomed_lesson01, https://www.teachengineering.org/activities/view/cub_biomed_lesson01_activity1

Subject:
Anatomy/Physiology
Engineering
Health, Medicine and Nursing
Language Education (ESL)
Material Type:
Activity/Lab
Assessment
Diagram/Illustration
Interactive
Lesson
Lesson Plan
Author:
Paulette Rubio
Oregon Open Learning
Date Added:
06/14/2022
Gravity-Fed Water System for Developing Communities
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about water poverty and how water engineers can develop appropriate solutions to a problem that is plaguing nearly a sixth of the world's population. Students follow the engineering design process to design a gravity-fed water system. They choose between different system parameters such as pipe sizes, elevation differentials between entry and exit pipes, pipe lengths and tube locations to find a design that provides the maximum flow and minimum water turbidity (cloudiness) at the point of use. In this activity, students play the role of water engineers by designing and building model gravity-fed water systems, learning the key elements necessary for viable projects that help improve the lives people in developing communities.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jeff Walters
Malinda Schaefer Zarske
Date Added:
10/14/2015
Great Energy Debate
Unrestricted Use
CC BY
Rating
0.0 stars

This is a debate-style learning activity in which student teams learn about energy sources and are then assigned to represent the different energy sources. Working cooperatively, students develop arguments on the pros and cons of their source over the others.

Subject:
Career and Technical Education
Environmental Studies
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
National Energy Education Development (NEED)
Date Added:
06/19/2012
Green Chemistry and Sustainable Design Canvas Course
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

In conjunction with a synchronous presentation, this course supports middle school educators in developing lessons for incorporating green chemistry and sustainable design into their classroom teaching.  The course explores a variety of topics and resources, providing many links to freely available curriculum and resources. 

Subject:
Chemistry
Engineering
Material Type:
Full Course
Author:
Carissa Haug
Date Added:
06/25/2021
Green Infrastructure and Low-Impact Development Technologies
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to innovative stormwater management strategies that are being used to restore the hydrology and water quality of urbanized areas to pre-development conditions. Collectively called green infrastructure (GI) and low-impact development (LID) technologies, they include green roofs and vegetative walls, bioretention or rain gardens, bioswales, planter boxes, permeable pavement, urban tree canopy, rainwater harvesting, downspout disconnection, green streets and alleys, and green parking. These approaches differ from the traditional centralized stormwater collection system with the idea of handling stormwater at its sources, resulting in many environmental, economic and societal benefits. A PowerPoint® presentation provides photographic examples, and a companion file gives students the opportunity to sketch in their ideas for using the technologies to make improvements to 10 real-world design scenarios.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brigith Soto
Jennifer Butler
Krysta Porteus
Maya Trotz
Ryan Locicero
William Zeman
Date Added:
09/18/2014
Greenewables
Read the Fine Print
Educational Use
Rating
0.0 stars

Students form expert engineering teams working for the (fictional) alternative energy consulting firm, Greenewables, Inc. Each team specializes in a form of renewable energy used to generate electrical power: passive solar, solar photovoltaic, wind power, low-impact hydropower, biomass, geothermal and (for more advanced students) hydrogen fuel cells. Teams produce poster presentations making a case for their technology and produce an accompanying PDF document using Adobe Acrobat that summarizes the presentation. This activity is geared towards fifth-grade and older students, and Internet research capabilities are required. Some portions of this activity may be appropriate with younger students.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jane Evenson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Greenhouse Effect in a Greenhouse
Read the Fine Print
Rating
0.0 stars

Build your own miniature "greenhouse" out of a plastic container and plastic wrap, and fill it with different things such as dirt and sand to observe the effect this has on temperature. Monitor the temperature using temperature probes and digitally plot the data on the graphs provided in the activity.

Subject:
Atmospheric Science
Physical Science
Material Type:
Activity/Lab
Diagram/Illustration
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/13/2011
Groundwater Detectives
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams locate a contaminant spill in a hypothetical site by measuring the pH of soil samples. Then they predict the direction of groundwater flow using mathematical modeling. They also use the engineering design process to come up with alternative treatments for the contaminated water.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Date Added:
10/14/2015
Grow Your Own Algae!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students discover how tiny microscopic plants can remove nutrients from polluted water. They also learn how to engineer a system to remove pollutants faster and faster by changing the environment for the algae.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Dayna Lee Martinez
Tapas K. Das
Date Added:
09/18/2014
A Guide to Rain Garden Construction
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a guide to rain garden construction in an activity that culminates the unit and pulls together what they have learned and prepared in materials during the three previous associated activities. They learn about the four vertical zones that make up a typical rain garden with the purpose to cultivate natural infiltration of stormwater. Student groups create personal rain gardens planted with native species that can be installed on the school campus, within the surrounding community, or at students' homes to provide a green infrastructure and low-impact development technology solution for areas with poor drainage that often flood during storm events.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brigith Soto
Jennifer Butler
Krysta Porteus
Maya Trotz
Ryan Locicero
William Zeman
Date Added:
09/18/2014
Hare and Snail Challenges
Read the Fine Print
Educational Use
Rating
0.0 stars

Students engage in the second design challenge of the unit, which is an extension of the maze challenge they solved in the first lesson/activity of this unit. Students extend the ideas learned in the maze challenge with a focus more on the robot design. Gears are a very important part of any machine, particularly when it has a power source such as engine or motor. Specifically, students learn how to design the gear train from the LEGO MINDSTORMS(TM) NXT servomotor to the wheel to make the LEGO taskbot go faster or slower. A PowerPoint® presentation, pre/post quizzes and a worksheet are provided.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Sachin Nair
Satish S. Nair
Date Added:
09/18/2014
Heat and Light from Electricity
Read the Fine Print
Rating
0.0 stars

Discover how electricity can be converted into other forms of energy such as light and heat. Connect resistors and holiday light bulbs to simple circuits and monitor the temperature over time. Investigate the differences in temperature between the circuit with the resistor and the circuit using the bulb.

Subject:
Chemistry
Education
Physical Science
Physics
Material Type:
Activity/Lab
Diagram/Illustration
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/12/2011
The Hospital of the Future: Engineering through Robotics and Automated Patient Care
Read the Fine Print
Educational Use
Rating
0.0 stars

Students further their understanding of the engineering design process while combining mechanical engineering and bioengineering to create an automated medical device. During the activity, students are given a fictional client statement and are required to follow the steps of the design process to create medical devices that help reduce the workload for hospital workers and increase the quality of patient care.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jared R. Quinn
Jeanne Hubelbank
Kristen Billiar
Terri Camesano
Date Added:
10/14/2015
How Can Science Help Build a Better Ice Pack? An Integrated 3D Storyline Unit for Middle School Science using Instant Ice Packs
Unrestricted Use
CC BY
Rating
0.0 stars

In this unit designed for an integrated middle school science classroom, students investigate why athletes ice injuries. This leads students to wonder why actual bags of ice are used instead of the instant ice packs found in first aid kits. Students then investigate the chemical reaction occurring within an instant ice pack and work to develop a better design.

Anchoring Phenomenon: First aid care for musculoskeletal injuries using bags of ice instead of instant ice packs containing an endothermic chemical reaction.

NGSS PEs Addressed: MS-PS1-1; MS-PS1-2; MS-PS1-5; MS-PS1-6; MS-PS3-3; MS-LS1-8; MS-ETS1-1

Cover Image Source: https://www.stack.com/a/cryotherapy

Subject:
Applied Science
Chemistry
Engineering
Life Science
Physical Science
Material Type:
Activity/Lab
Assessment
Homework/Assignment
Lesson Plan
Reading
Student Guide
Teaching/Learning Strategy
Unit of Study
Author:
Arlene Friend
Kathryn Fleegal
NextGenerationTeachers
Stephanie Bank
Date Added:
04/15/2019
How Things Fly: Engineering Design Challenge
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Do you have coffee filters, masking tape, and some bendy straws handy? Grab those and a few more supplies from your kitchen and you're ready to start thinking like an engineer.

Subject:
Applied Science
Engineering
Physical Science
Material Type:
Reading
Provider:
National Air and Space Museum
Author:
National Air and Space Museum
Date Added:
09/14/2022
How can classrooms be redesigned to better accommodate technology and student needs?
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Throughout this problem-based learning module students will address real world skills. Students will be asked to brainstorm ideas and think innovatively both independently and collaboratively in addressing a real-world problem that is relevant to their daily lives and surroundings.  Students/teams will be encouraged to use the internet for research purposes in their design phase. What components should be included for a modern, updated classroom? Students will utilize various online platforms to design an ideal, modern, contemporary “dream classroom”.  Students will incorporate components that would meet the needs of all learners and a classroom that would be able to integrate technology. These classrooms can be shared with relevant individuals in the community and others in the school building.

Subject:
Mathematics
Physical Science
Material Type:
Lesson Plan
Author:
Martin Ruthaivilavan
Date Added:
11/13/2018
How can we use solar energy to improve the lives of people living “off-the-grid” in Kenya? (Middle School Engineering Design)
Unrestricted Use
CC BY
Rating
0.0 stars

How can we use solar energy to improve the lives of people living “off-the-grid” in Kenya? This unit explores the NGSS Middle School bundle for Engineering Design (MS-ETS1-1, MS-ETS1-2, MS-ETS1-3, MS-ETS1-4) by engaging students in a Project-Based engineering task where students develop and apply their understanding of solar energy to create a solar device which can generate electricity for people who have lost power due to a natural disaster.

Subject:
Applied Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
Educational Service District 112
Author:
Pranjali Upadhyay
Date Added:
01/04/2019
Instrument Construction, Site Selection and Set-Up
Read the Fine Print
Rating
0.0 stars

This resource provides guidance on site selection for the GLOBE Atmosphere data collection protocols. Instructions for building an instrument shelter, a snowboard, an ozone measurement station, and a wind direction instrument are included.

Subject:
Applied Science
Ecology
Environmental Science
Life Science
Material Type:
Activity/Lab
Homework/Assignment
Interactive
Lesson Plan
Teaching/Learning Strategy
Provider:
UCAR Staff
Provider Set:
GLOBE Teacher's Guide NGSS Aligned Records
Author:
The GLOBE Program, UCAR (University Corporation for Atmospheric Research)
Date Added:
01/09/2007
Intraocular Pressure Sensor Design Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Acting as if they are biomedical engineers, students design and print 3D prototypes of pressure sensors that measure the pressure of the eyes of people diagnosed with glaucoma. After completing the tasks within the associated lesson, students conduct research on pressure gauges, apply their understanding of radio-frequency identification (RFID) technology and its components, iterate their designs to make improvements, and use 3D software to design and print 3D prototypes. After successful 3D printing, teams present their models to their peers. If a 3D printer is not available, use alternate fabrication materials such as modeling clay, or end the activity once the designs are complete.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janelle Orange
Date Added:
10/14/2015