Students will discover the carbon component in soils, the role carbon plays …
Students will discover the carbon component in soils, the role carbon plays in soil health, and the role that regenerative agriculture practices play in soil health and climate change.
Los incendios forestales son un factor que contribuye a las emisiones de …
Los incendios forestales son un factor que contribuye a las emisiones de gases de efecto invernadero. Los científicos estiman que los incendios forestales emitieron 8 mil millones de toneladas de CO2 por año durante los últimos 20 años. Los incendios forestales tienen riesgos y beneficios que afectan a los seres humanos. En este caso, los estudiantes aprenderán sobre los riesgos y beneficios de los incendios forestales, la ciencia detrás de cómo ocurren los incendios y las condiciones que hacen que un incendio sea catastrófico. Los estudiantes evaluarán los incendios locales / regionales para determinar cómo las actividades humanas contribuyen a los incendios forestales. Los estudiantes investigarán cómo se toman las decisiones de manejo forestal para disminuir los impactos negativos de los incendios forestales y disminuir la cantidad de CO2 que se emite por esos incendios.
El desperdicio de comida es un contribuyente mayor a los gases de …
El desperdicio de comida es un contribuyente mayor a los gases de efecto invernadero. La comida desperdiciada y los recursos usados en su producción son responsables por aproximadamente 8% de las emisiones globales de gases de efecto invernadero. En este caso, los estudiantes aprenderán sobre los recursos requeridos para producir comida siguiendo el ciclo del carbón y descubrirán cómo el desperdicio de comida contribuye al cambio climático. También aprenderán sobre la cadena de transporte de la granja a la mesa y cómo conducir una auditoría de desperdicio de comida. Finalmente, investigarán soluciones al problema de desperdicio de comida que pueden aplicar a sus propias vidas, su escuela y su comunidad.
Urban forests provide many benefits to a community and can minimize the …
Urban forests provide many benefits to a community and can minimize the human impact on the environment. Students will explore the impacts an urban community has on the environment. Students will discover the role trees play in an urban community and how trees can affect the ecosystem, human wellbeing, and provide economic value. Students will explore Indigenous relationships with trees. During the course of this storyline, students will measure and monitor urban forest ecosystem benefits, perform a field investigation, and design a development to minimize negative environmental impacts
Coastal wetlands bring many benefits to ecosystems including their ability to sequester …
Coastal wetlands bring many benefits to ecosystems including their ability to sequester carbon and mitigate fluctuations in sea levels. Students will understand the ecosystem benefits of coastal wetlands with a focus on the potential of estuaries for climate related planning.
In this activity, students will learn how water can be polluted by …
In this activity, students will learn how water can be polluted by algal blooms. They will grow algae with different concentrations of fertilizer or nutrients and analyze their results as environmental engineers working to protect a local water resource.
This lesson provides students with an overview of the electric power industry …
This lesson provides students with an overview of the electric power industry in the United States. Students also become familiar with the environmental impacts associated with a variety of energy sources.
Students read and evaluate descriptions of how people live "off the grid" …
Students read and evaluate descriptions of how people live "off the grid" using solar power and come to understand better the degree to which that lifestyle is or is not truly independent of technological, economic and cultural infrastructure and resources. In the process, students develop a deeper appreciation of the meaning of "community" and the need for human connection. This activity is geared towards fifth-grade and older students and Internet research capabilities are required. Portions of this activity may be appropriate with younger students.
Students investigate the life cycles of engineered products and how they impact …
Students investigate the life cycles of engineered products and how they impact the environment. They use a basic life cycle assessment method that assigns fictional numerical values for different steps in the life cycle. Then they use their analyses to compare the impacts of their products to other products, and suggest ways to reduce environmental impact based on their analyses.
Students experience the steps of the engineering design process as they design …
Students experience the steps of the engineering design process as they design solutions for a real-world problem that could affect their health. After a quick review of the treatment processes that municipal water goes through before it comes from the tap, they learn about the still-present measurable contamination of drinking water due to anthropogenic (human-made) chemicals. Substances such as prescription medication, pesticides and hormones are detected in the drinking water supplies of American and European metropolitan cities. Using chlorine as a proxy for estrogen and other drugs found in water, student groups design and test prototype devices that remove the contamination as efficiently and effectively as possible. They use plastic tubing and assorted materials such as activated carbon, cotton balls, felt and cloth to create filters with the capability to regulate water flow to optimize the cleaning effect. They use water quality test strips to assess their success and redesign for improvement. They conclude by writing comprehensive summary design reports.
Simulating the Tragedy of Commons illustrates for students to how sustaining our …
Simulating the Tragedy of Commons illustrates for students to how sustaining our natural resources requires conservation and the cooperative use of those resources.
This unit begins with a challenge in which students must make a …
This unit begins with a challenge in which students must make a decision for the common good. The task highlights the importance of considering various stakeholder perspectives in order to serve the common good. Students transfer what they have learned to their study of a major dam project in Washington State. Teams focus on one of four projects (Upper Skagit Hydroelectric Project, Lower Snake River Project, Columbia River Gorge Project, Columbia River Basin Project). Each team works together to understand the perspectives of diverse stakeholders as they develop a response to the unit-driving question: How can dams in Washington serve the common good? Teams apply what they have learned to come up with a recommendation for the future of the dam project that considers how it will impact people and places.
In this hands-on activity, students explore whether rooftop gardens are a viable …
In this hands-on activity, students explore whether rooftop gardens are a viable option for combating the urban heat island effect. The guiding question is: Can rooftop gardens reduce the temperature inside and outside of houses?
This is a mapping activity that uses the student’s schoolyard to investigate …
This is a mapping activity that uses the student’s schoolyard to investigate how rain/stormwater interacts with different surfaces and where stormwater problems may occur. Students use Next Generation Science Standards’ Science and Engineering Practices in a near-by, relevant place.
Students are introduced to the concepts of graywater and water reuse within …
Students are introduced to the concepts of graywater and water reuse within households. They calculate the amount of used water a family generates in one day and use a model of home plumbing to find out how much graywater is produced in homes every day. They graph their results and discuss energy efficiency implications. Students are then challenged to find ways to reduce water use within the home.
Astronaut Randy Bresnik walks us through the different parts that make up …
Astronaut Randy Bresnik walks us through the different parts that make up a spacesuit. Also learn how to make and test your own spacesuit using a potato.
Over the course of three sessions, students act as agricultural engineers and …
Over the course of three sessions, students act as agricultural engineers and learn about the sustainable pest control technique known as soil biosolarization in which organic waste is used to help eliminate pests during soil solarization instead of using toxic compounds like pesticides and fumigants. Student teams prepare seed starter pots using a source of microorganisms (soil or compost) and “organic waste” (such as oatmeal, a source of carbon for the microorganisms). They plant seeds (representing weed seeds) in the pots, add water and cover them with plastic wrap. At experiment end, students count the weed seedlings and assess the efficacy of the soil biosolarization technique in inactivating the weed seeds. An experiment-guiding handout and pre/post quizzes are provided.
Students learn about contamination and pollution, specifically in reference to soil in …
Students learn about contamination and pollution, specifically in reference to soil in and around rivers. To start, groups use light sensors to take light reflection measurements of different colors of sand (dyed with various amounts of a liquid food dye), generating a set of "soil" calibration data. Then, they use a stream table with a simulated a river that has a scattering of "contaminated wells" represented by locations of unknown amounts of dye. They make visual observations and use light sensors again to take reflection measurements and refer to their earlier calibration data to determine the level of "contamination" (color dye) in each well. Acting as engineers, they determine if their measured data is comparable to visual observations. The small-scale simulated flowing river shows how contamination can spread.
During this activity, students will learn how environmental engineers monitor water quality …
During this activity, students will learn how environmental engineers monitor water quality in resource use and design. They will employ environmental indicators to assess the water quality of a nearby stream. Students will make general observations of water quality as well as count the number of macroinvertabrates. They will then use the information they collected to create a scale to rate how good or bad the water quality of the stream. Finally, the class will compare their numbers and discuss and defend their results.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.