Unit Summary This unit on metabolic reactions in the human body starts …
Unit Summary This unit on metabolic reactions in the human body starts out with students exploring a real case study of a middle-school girl named M’Kenna, who reported some alarming symptoms to her doctor. Her symptoms included an inability to concentrate, headaches, stomach issues when she eats, and a lack of energy for everyday activities and sports that she used to play regularly. She also reported noticeable weight loss over the past few months, in spite of consuming what appeared to be a healthy diet. Her case sparks questions and ideas for investigations around trying to figure out which pathways and processes in M’Kenna’s body might be functioning differently than a healthy system and why. Students investigate data specific to M’Kenna’s case in the form of doctor’s notes, endoscopy images and reports, growth charts, and micrographs. They also draw from their results from laboratory experiments on the chemical changes involving the processing of food and from digital interactives to explore how food is transported, transformed, stored, and used across different body systems in all people. Through this work of figuring out what is causing M’Kenna’s symptoms, the class discovers what happens to the food we eat after it enters our bodies and how M’Kenna’s different symptoms are connected. This unit builds towards the following NGSS Performance Expectations (PEs) as described in the OpenSciEd Scope & Sequence: MS-LS1-3, MS-LS1-5, MS-LS1-7, MS-PS1-1, MS-PS1-2. The OpenSciEd units are designed for hands-on learning, and therefore materials are necessary to teach the unit. These materials can be purchased as science kits or assembled using the kit material list. Additional Unit InformationNext Generation Science Standards Addressed in this UnitPerformance ExpectationsThis unit builds toward the following NGSS Performance Expectations (PEs):
Students figure out that they can trace all food back to plants, …
Students figure out that they can trace all food back to plants, including processed and synthetic food. They obtain and communicate information to explain how matter gets from living things that have died back into the system through processes done by decomposers. Students finally explain that the pieces of their food are constantly recycled between living and nonliving parts of a system.
This is an online module created for the 3rd Grade of the …
This is an online module created for the 3rd Grade of the Junior High School. The topic of the lesson is the "7 Wonders of the World", and its main emphasis is placed on the Listening comprehension skills practice.The lesson is constructed on the basis of the ADDIE Model (Kurt,2017), and it is inspired by the UDL Principles approach (CAST,2011), and the Gagne's Nine Events of Instruction.During the lesson, various online platforms and webtools are used, something that makes learning procedure more interesting and accessible for all learners to attend and follow.
At Fab Life Society, our mission is to create online programs to …
At Fab Life Society, our mission is to create online programs to help women find limitless financial freedom from anywhere and on their schedule. And our duty is to donate part of our income to female empowerment charities around the world. And she’s inviting women from anywhere in the world to enjoy the tools, inspiration, knowledge, and confidence they need to jump into entrepreneurship quickly and successfully.
This mini-lesson focuses on the skill of understanding what objective and subjective …
This mini-lesson focuses on the skill of understanding what objective and subjective writing look like and their respective purposes. Students need to be able to understand and identify objective and subjective writing in order to comprehend an author's purpose and make informed decisions about what is being conveyed in the text.
It's time women find limitless financial freedom from anywhere and on their …
It's time women find limitless financial freedom from anywhere and on their schedule. Financially literate women can enjoy higher empowerment. The challenges of millenial generation are even more complex than their earlier generation. Hence understanding personal finances and managing them becomes equally necessary.
Oh, no! I’ve dropped my phone! Most of us have experienced the …
Oh, no! I’ve dropped my phone! Most of us have experienced the panic of watching our phones slip out of our hands and fall to the floor. We’ve experienced the relief of picking up an undamaged phone and the frustration of the shattered screen. This common experience anchors learning in the Contact Forces unit as students explore a variety of phenomena to figure out, “Why do things sometimes get damaged when they hit each other?”
Student questions about the factors that result in a shattered cell phone screen lead them to investigate what is really happening to any object during a collision. They make their thinking visible with free-body diagrams, mathematical models, and system models to explain the effects of relative forces, mass, speed, and energy in collisions. Students then use what they have learned about collisions to engineer something that will protect a fragile object from damage in a collision. They investigate which materials to use, gather design input from stakeholders to refine the criteria and constraints, develop micro and macro models of how their solution is working, and optimize their solution based on data from investigations. Finally, students apply what they have learned from the investigation and design to a related design problem.
Unit Summary In this unit, students develop ideas related to how sounds …
Unit Summary In this unit, students develop ideas related to how sounds are produced, how they travel through media, and how they affect objects at a distance. Their investigations are motivated by trying to account for a perplexing anchoring phenomenon — a truck is playing loud music in a parking lot and the windows of a building across the parking lot visibly shake in response to the music. They make observations of sound sources to revisit the K–5 idea that objects vibrate when they make sounds. They figure out that patterns of differences in those vibrations are tied to differences in characteristics of the sounds being made. They gather data on how objects vibrate when making different sounds to characterize how a vibrating object’s motion is tied to the loudness and pitch of the sounds they make. Students also conduct experiments to support the idea that sound needs matter to travel through, and they will use models and simulations to explain how sound travels through matter at the particle level. This unit builds toward the following NGSS Performance Expectations (PEs) as described in the OpenSciEd Scope & Sequence: MS-PS4-1, MS-PS4-2. The OpenSciEd units are designed for hands-on learning and therefore materials are necessary to teach the unit. These materials can be purchased as science kits or assembled using the kit material list.
Lorem ipsum dolor sit amet, expetenda disputationi cu has, quo modo tempor …
Lorem ipsum dolor sit amet, expetenda disputationi cu has, quo modo tempor incorrupte an, qui dignissim consequat in. In his vivendo dignissim. Cu mea illud efficiantur, at dignissim moderatius sea. Sit te quaeque accusata molestiae. Cu mea paulo audiam constituto, erat illud ex eos. Ei sapientem necessitatibus eum, eum in platonem dignissim, in audiam honestatis ius. Natum possim cu vix, eu mea omnis suscipit eleifend.
Austin Community College (ACC) Learn OER includes a series of self-paced online …
Austin Community College (ACC) Learn OER includes a series of self-paced online learning modules. The first nine modules will serve as an introduction to open educational resources (OER) and as an opportunity for further exploration and discovery of open education practices. The tenth module serves as a final assessment of your learning. Throughout the modules there are opportunities for you to test your knowledge and further explore a concept. The modules allow you to learn at your own pace. While you can follow the modules in any order, it is recommended that you start with Module 1 and progress through in order.
In this professional development session, we will develop a shared understanding of …
In this professional development session, we will develop a shared understanding of how formative assessment works and different approaches that have been developed. The material for this resource come from a series of PD sessions on formative assessment developed by the ACESSE team: Philip Bell, Shelley Stromholt, Bill Penuel, Katie Van Horne, Tiffany Neill, and Sam Shaw.We will be updating this Facilitator's Guide for ACESSE Resource A with the most up-to-date information about this resource over time. If you encounter problems with this resource, you can contact us at: STEMteachingtools@uw.edu
The NRC Framework for K-12 Science Education and the resulting Next Generation …
The NRC Framework for K-12 Science Education and the resulting Next Generation Science Standards focus on an integrated three-dimensional view of science learning in which students develop understanding of core ideas of science and crosscutting concepts in the context of engaging in science and engineering practices.How is assessing three-dimensional science learning different than how we have thought of science learning in the past? How can we design assessment tasks that elicit student’s current understanding of specific aspects of the disciplinary core ideas, science and engineering practices, and crosscutting concepts in order to shape future instruction? In this workshop, participants will learn how to interpret and design cognitive formative assessment to fit a three-dimensional view of learning.This resource originates from a series of PD sessions on 3D formative assessment developed and provided by Katie Van Horne, Shelley Stromholt, Bill Penuel, and Philip Bell. It has been improved through a collaboration in the ACESSE project with science education experts from 13 states. Please cite this resource as follows:Stromholt, S., Van Horne, K., Bell, P., Penuel, W. R., Neill, T. & Shaw, S. (2017). How to Assess Three-Dimensional Learning in Your Classroom: Building Assessment Tasks that Work. [OER Professional Development Session from the ACESSE Project] Retrieved from http://stemteachingtools.org/pd/SessionB
How can science instruction be meaningfullyconnected to the out-of-school lives of students? In …
How can science instruction be meaningfullyconnected to the out-of-school lives of students? In this professional development, we will consider how to design formative assessments that build on learners’ interest and knowledge, promoting equity and social justice in the process. The material for this resource comes from a series of PD sessions on formative assessment originally developed by Philip Bell and Shelley Stromholt.We will be updating this Facilitator's Guide for ACESSE Resource C with the most up to date information about this resource over time. If you encounter problesm with this resources, you can contact us at STEMteachingtools@uw.eduThis resource was refined through a 13-state collaboration to make the resource more broadly useful. If you choose to adapt these materials, please attribute the source and that it was work funded by the National Science Foundation (NSF).
Abstract: This session provides a step-by-step process to support participants as they design …
Abstract: This session provides a step-by-step process to support participants as they design a 3D assessment task for the science classroom. Along the way, they learn how to define 3D learning performances for specific lessons—and how to use a range of tools to support their assessment design work. A key goal of the session activity is to improve the connection of intended learning goals to assessment practices. Participants build their 3D assessment design capacity by designing and workshopping tasks—before piloting them in their classrooms. The approaches learned in this workshop can be used with any curricula, at any grade level, and across all subjects of science.
This pair of workshops is designed to introduce you to the process …
This pair of workshops is designed to introduce you to the process of selecting phenomena that can anchor an entire unit that supports students’ 3D science learning or that can serve as a basis for a multi-component assessment task. This resource can also be used by individuals wanting to refine their teaching practice around phenomena based instruction. You may have heard a lot about phenomena, but you may also be wondering what exactly they are, and whether using phenomena is any different from how teachers teach today already.This learning experience will help you:Explain to a peer the role of phenomena and design challenges in science teaching, with a particular focus on equity and justice. Generate working definitions of phenomena, design challenges, and disciplinary core ideas. Identify phenomena related to a bundle of three-dimensional standards. Experience how phenomena can be introduced at the start of a unit, in order to launch a student-driven series of questions.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.