Can active faults be identified remotely, based upon their appearance in the …
Can active faults be identified remotely, based upon their appearance in the landscape? How can the geomorphic features associated with active faults be used to classify and quantify fault movement? In this unit, students will analyze lidar data and remote sensing imagery, with the aim of discovering how different styles and timescales of faulting are recorded in the landscape. Concepts pertinent to earthquake hazard and infrastructure risk -- such as average slip per event, earthquake recurrence, and fault slip rate -- will be investigated.
Show more about Online Teaching suggestions Hide Online-ready: The exercise is electronic and could be done individually or in small online groups (using the Google Earth rather than printable files). Lecture can be done in synchronous or asynchronous online format.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
The example of a proposed land-use change that was used in Unit …
The example of a proposed land-use change that was used in Unit 2.3 is built upon here. The activities in this unit are meant to broaden the discussion beyond calculating quantitative run-off changes. Now we will also bring in consideration of a broader range of ecosystem services, as well as other ways in which a landscape can be valued, some of which may not be easily measured or even conceptualized as "services." Classroom time is devoted to the instructor and students exploring both (a) the stakeholders who have an interest in a particular place and (b) the various interests/uses those stakeholders may have for that place. By the end of the activity, the class should have identified several major stakeholder groups and several distinct ecosystem services. Students, organized into groups representing particular stakeholders, will then be tasked to prepare, for Unit 3.2, a group presentation, to be discussed on class on the last day of the module, that utilizes those ecosystem services as much as possible.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this activity, the student groups organized at the end of Unit …
In this activity, the student groups organized at the end of Unit 3.1 will prepare presentations representing different stakeholder positions. This artifact -- Part I of the Module Summative Assessment (Microsoft Word 2007 (.docx) 25kB Sep4 16) -- can be part of a presentation to the instructor, to a panel of faculty/students, or to a "board" representing some decision-making unit (Community Council, University Board of Trustees, City/County Planning Commission). At the conclusion of this unit, students will be prompted to reflect, individually, on an ecosystem services approach to natural resources management -- Part II of the Module Summative Assessment (Microsoft Word 2007 (.docx) 23kB Sep4 16) .
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this unit, students will design a survey (TLS and/or SfM) of …
In this unit, students will design a survey (TLS and/or SfM) of a fault scarp. After conducting the survey in the field, students will analyze the data to identify the number and magnitude of possible fault displacement(s) by measuring offsets in the point cloud as well as calculate the recurrence interval of the fault based on either a known age or scarp morphometric age (or both). The goal is to create a brief report summarizing the methods used and Quaternary history of displacements on the fault. An optional extension exercise (Unit 3.5) has the students conduct a hillslope diffusion analysis is using MATLAB. Fault scarps are the topographic evidence of earthquakes large and shallow enough to break the ground surface, and are evidence of Quaternary fault activity. A primary goal of studying exposed scarps is to gain insight into the magnitude and frequency of fault slip. Scarps typically begin as step-shaped landforms and deteriorate with age through erosion. In some cases, the form of the scarp may record evidence of more than one earthquake, distinguished by a change in scarp slope. Assuming the same surface processes, the relative age of fault scarps can be determined by their morphology (shape).
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Bruce Douglas (Indiana University)
Nicholas Pinter (University of California Davis)
Nathan Niemi (University of Michigan)
J. Ramon Arrowsmith (Arizona State University)
Kate Shervais (UNAVCO)
Chris Crosby (UNAVCO)
This unit provides essential background information on GPS (global positioning system) and …
This unit provides essential background information on GPS (global positioning system) and reference frames. Students learn how to access GPS location and velocity data from the Network of the Americas (NOTA). They calculate total horizontal motion graphically and mathematically and tie the observed motions to local strain.
Show more information on GPS versus GNSS Hide Note: Although the term GPS (Global Positioning System) is more commonly used in everyday language, it officially refers only to the USA's constellation of satellites. GNSS (Global Navigation Satellite System) is a universal term that refers to all satellite navigation systems including those from the USA (GPS), Russia (GLONASS), European Union (Galileo), China (BeiDou), and others. In this module, we use the term GPS even though, technically, some of the data may be coming from satellites in other systems.
Show more about Online Teaching suggestions Hide Online-ready: The exercise is electronic (including accessing an online data portal) and could be done individually or in small online groups. Lecture can be done in synchronous or asynchronous online format.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
How can we tell what style of faulting was responsible for a …
How can we tell what style of faulting was responsible for a particular earthquake? Especially in cases where there is limited instrumentation in a region, or where geologists have difficulty accessing the affected areas? What if the fault responsible does not break the surface? In this unit, we will show how modern space geodesy allows us to measure movements of Earth's surface over wide areas without the need to visit the region in question, and we will demonstrate the various Earth processes that we are able to measure and monitor in this way. Specifically, we will show how a technique known as Interferometric Synthetic Aperture Radar (InSAR) has revolutionized our ability to study earthquakes on the continents, by allowing us to measure where, over what spatial extent, how far, and in what direction, earthquakes have caused the ground to move.
Show more about Online Teaching suggestions Hide Online-ready: The exercise is electronic and could be done individually or in small online groups. Lecture can be done in an online format. A synchronous session is recommended.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Unit 3 addresses concepts related to urban-atmosphere interactions. The content explores how …
Unit 3 addresses concepts related to urban-atmosphere interactions. The content explores how urban landscapes and atmospheric constituents modify or interact with the atmosphere to affect temperature, clouds, rainfall, and other parts of the water cycle. Fundamental concepts of weather and climate are established. The unit then transitions to focus on the "urbanized" environment and its complex interactions with the atmosphere. Students will learn about interactions such as 1) urban modification of surface temperature and energy exchanges; 2) water cycle components; 3) cloud-rainfall evolution within urban environments; and 4) applications to real societal challenges like urban flooding. The unit integrates basic meteorological/climatological analyses, geospatial thinking, and integration of scientific concepts within a real world context.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students work with GPS velocity data from three stations in the same …
Students work with GPS velocity data from three stations in the same region that form an acute triangle. By investigating how the ellipse inscribed within this triangle deforms, students learn about strain, strain ellipses, GPS, and how to tie these to regional geology and ongoing hazards. This unit contains the primary infinitesimal strain analysis for the module. After the instructor demonstrates the method using data from Japan, students investigate three different GPS station triangles in three difference tectonic regimes: convergent (U.S. Pacific Northwest), extensional (Wasatch fault, Utah), and strike-slip (San Andreas Fault, California).
Show more information on GPS versus GNSS Hide Note: Although the term GPS (Global Positioning System) is more commonly used in everyday language, it officially refers only to the USA's constellation of satellites. GNSS (Global Navigation Satellite System) is a universal term that refers to all satellite navigation systems including those from the USA (GPS), Russia (GLONASS), European Union (Galileo), China (BeiDou), and others. In this module, we use the term GPS even though, technically, some of the data may be coming from satellites in other systems.
Show more about Online Teaching suggestions Hide Online-ready: The exercise is electronic (including accessing an online data portal) and could be done individually or in small online groups. Lecture can be done in synchronous or asynchronous online format.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Applications of geodetic imaging in geomorphology research often center on monitoring and …
Applications of geodetic imaging in geomorphology research often center on monitoring and detecting change within a system over time. Since most geomorphic systems evolve over longer time periods -- months, years, or more -- than available in a typical field course, this unit of the module may be entirely lab-based. Or you may have students collect data -- of a fluvial system, landslide, or other geomorphic feature -- if the feature they survey has a previously collected data set upon which to compare their new data set. The goal of this unit is to teach students to transform point clouds of a feature taken some time apart into DEMs. The DEMs are then subtracted to calculate the elevation change over time.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Kate Shervais (UNAVCO)
J. Ramon Arrowsmith (Arizona State University)
Nathan Niemi (University of Michigan)
Marin Clark (University of Michigan)
Chris Crosby (UNAVCO)
How are different types of earthquakes represented in InSAR data? How can …
How are different types of earthquakes represented in InSAR data? How can we obtain detailed information on the earthquake source from InSAR data? How well can we resolve those details? In this unit, students investigate how simple elastic dislocation models can be matched to interferograms of earthquakes, and the various geometrical and surficial factors that can affect that process.
Notice Oct 5, 2020: the Visible Earthquakes tool was unavailable for the last couple weeks but is now online again at https://visible-earthquakes.appspot.com. Thank you for your patience.
Show more about Online Teaching suggestions Hide Online-ready: The exercise is electronic and could be done individually or in small online groups. Lecture can be done in an online format. A synchronous session is recommended.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students are introduced to evapotranspiration (ET) and how ET varies with meteorological …
Students are introduced to evapotranspiration (ET) and how ET varies with meteorological factors and plant factors. A pre-class video and worksheet introduce students to estimating landscape water needs from ET and precipitation data. In class, students design low water-use landscaping and calculate the water savings of water-efficient landscaping compared with turf grass.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
The 2014 South Napa earthquake was the first large earthquake (Mag 6) …
The 2014 South Napa earthquake was the first large earthquake (Mag 6) to occur within the Plate Boundary Observatory GPS network since installation. It provides an excellent example for studying crustal strain associated with the earthquake cycle of a strike-slip fault with clear societal relevance. The largest earthquake in the California Bay Area in twenty-five years, the South Napa earthquake caused hundreds of injuries and more than $400 million in damages. This activity uses a single triangle of GPS stations (P198, P200, SVIN), located to the west of the earthquake epicenter, to estimate both the interseismic strain rate and coseismic strain. By the end of the exercise, the students also have direct evidence that considering the recurrence interval on a single fault, which is part of a larger system, is not reasonable. An extension option gives the opportunity to discuss earthquake early warning systems.
Show more information on GPS versus GNSS Hide Note: Although the term GPS (Global Positioning System) is more commonly used in everyday language, it officially refers only to the USA's constellation of satellites. GNSS (Global Navigation Satellite System) is a universal term that refers to all satellite navigation systems including those from the USA (GPS), Russia (GLONASS), European Union (Galileo), China (BeiDou), and others. In this module, we use the term GPS even though, technically, some of the data may be coming from satellites in other systems.
Show more about Online Teaching suggestions Hide Online-ready: The exercise is electronic (including accessing an online data portal) and could be done individually or in small online groups. Lecture can be done in synchronous or asynchronous online format.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Unit 5 is a final exercise that can start during a lab …
Unit 5 is a final exercise that can start during a lab period and carry over into work outside of the lab time. The project report will test students' abilities to synthesize and apply knowledge related to LiDAR, InSAR, and infrastructure analysis learned in earlier units of the module. Data are provided for two potential case study sites for the final report -- El Major Cucapah Earthquake (Mexico 2010) and South Napa Earthquake (California 2014). Alternatively, the instructor or students can choose other sites to analyze. Unit 5, along with an exam question, is the summative assessment for the module. Students will be able to use the experience as a means of preparing for a final exam question on a related topic.
Show more about Online Teaching suggestions Hide Online-ready: The exercise is a final project that can be done remotely, individually or in small online groups.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
empty (Note: this resource was added to OER Commons as part of …
empty
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Unit 5 is the summative assessment for the module. This final exercise …
Unit 5 is the summative assessment for the module. This final exercise takes eight to ten hours. The exercise evaluates students' developed skills in survey design, execution of a geodetic survey, and simple data exploration and analysis. This summative assessment is written flexibly so that it can be applied to a variety of potential field sites and associated geoscience research questions. The unit has two parts, like most of the units in the module: Part 1, Geodetic Survey; and Part 2, Data Exploration. In addition, there is an optional Part 3, Data Processing, for students who have done Unit 4. This unit also has a number of prepared data sets for courses not able to collect field data.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students select their own set of three stations in an area of …
Students select their own set of three stations in an area of interest to them, conduct a strain analysis of the area between the stations, and tie the findings to regional tectonics and societal impacts in a 5 -- 7 minute class presentation. For many students this is their first foray into "research" and can be a powerfully eye-opening and exciting (if intimidating) experience. In larger classes, students can work in pairs to shorten total time needed for presentations. Unit 6, along with exam question/s, is the Summative Assessment for the module.
Show more about Online Teaching suggestions Hide Online-ready: The exercise is a final project that can be done remotely, individually or in small online groups. Final presentations could be done in a synchronous class period.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
To prepare for this laboratory activity, students are introduced to the concepts …
To prepare for this laboratory activity, students are introduced to the concepts of cartography such as longitude and latitude, the cardinal points, map orientation, projection and scaling. (See supplemental handout) A mock quiz is administered to ensure understanding of these basic concepts.
The exercise requires access to an internet-ready computer, with Google earth downloaded, the GIS software package (ArcGIS) installed, a word-processing application (MS Word), and a spreadsheet program (MS Excel). Students may need a primer on how to use Excel: http://www.shodor.org/scsi/handouts/excel.html
Through this activity, students can plan their dream vacation. They will use Google earth to obtain the geographic coordinates (longitude and latitude) of places of interest in any part of the world. Using GIS, students create a customized map depicting chosen sites, and approximate the distance between these locations. This activity gives students practice in interpreting maps, and an opportunity to learn about countries outside the United States. The activity can also be used to connect geography with environmental science.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This lab uses Google Earth to measure the rate of seacliff retreat. …
This lab uses Google Earth to measure the rate of seacliff retreat. It touches upon coastal processes, natural hazards, and coastal management issues. The central focus of the lab is in the Monterey Bay area.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This activity is for an introductory oceanography course. It is designed to …
This activity is for an introductory oceanography course. It is designed to allow students to use various tools (satellite images, Google Earth) to explore the shape of the sea floor and ocean basins in order to gain a better understanding of both the processes that form ocean basins, as well as how the shape of ocean basins influences physical and biological processes.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
To prepare for this lab assignment the students read an article on …
To prepare for this lab assignment the students read an article on topographic maps and their purpose. They have two assignments that test their understanding of this largely new material. I hold a discussion on maps and topography and the students work through some small contouring exercises.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.