Student teams use sensorsâmotion detectors and accelerometersâto collect walking gait data from …
Student teams use sensorsâmotion detectors and accelerometersâto collect walking gait data from group members. They import their collected position and acceleration data into Excel® for graphing and analysis to discover the relationships between position, velocity and acceleration in the walking gaits. Then they apply their understanding of slopes of secant lines and Riemann sums to generate and graph additional data. These activities provide practice in the data collection and analysis of systems, similar to the work of real-world engineers.
Einstein called Galileo the "father of modern physics." This media-rich essay from …
Einstein called Galileo the "father of modern physics." This media-rich essay from the NOVA Web site looks at Galileo's quest to understand the mathematics of motion.
This remote learning lab manual was created to guide students in 200-level …
This remote learning lab manual was created to guide students in 200-level introductory/general physics courses toward meeting the first outcome in the science category of the Associate of Arts Oregon Transfer Degree:
Gather, comprehend, and communicate scientific and technical information in order to explore ideas, models, and solutions and generate further questions.
The lab design goal was to adapt existing F2F labs (already aligned to AAOT science outcome #1) for a remote learning environment without abandoning the pedagogical advantages provided by combining guided inquiry methods with specialized physics education equipment, such as digital sensors and unique demonstration apparatus. Therefore, many of the labs contain embedded videos of experiments being performed and links to open-access Google spreadsheets containing the data produced by equipment during the experiments. In many cases overlay effects have been added to videos to provide additional experimental parameters, direct students’ attention to important occurrences, or and assist with understanding of the experimental methods. The data in the spreadsheets has been edited to remove irrelevant data (e.g. acceleration data automatically collected by lab software before the release of a moving fan cart). Students gain experience with well established physics concepts by applying them to create models used to make predictions. The need for assumptions in creating a model is explicitly addressed and students are asked to think critically about the affect of various assumptions on the validity of models in different situations. As in research science, experimental data are analyzed in order to produce results for comparison to prediction. Students are asked to think critically about differences between predictions and results in the context of model assumptions and measurement uncertainty
In this demonstration students are given a position, velocity or acceleration graph …
In this demonstration students are given a position, velocity or acceleration graph showing the motion of an object. They are asked to write a short description of the motion, and make predictions by completing the remaining two graphs.
Visualize the gravitational force that two objects exert on each other. Change …
Visualize the gravitational force that two objects exert on each other. Change properties of the objects in order to see how it changes the gravity force.
Visualize the gravitational force that two objects exert on each other. Change …
Visualize the gravitational force that two objects exert on each other. Change properties of the objects in order to see how it changes the gravity force.
This activity is designed to support a variety of STEM concepts: scientific …
This activity is designed to support a variety of STEM concepts: scientific method, making predictions, gathering and analyzing data, and developing conclusions based on experimentation. This activity draws on active student engagement, and is useful in many STEM content areas.
This activity is designed to support a variety of STEM concepts: scientific …
This activity is designed to support a variety of STEM concepts: scientific method, making predictions, gathering and analyzing data, and developing conclusions based on experimentation. This activity draws on active student engagement, and is useful in many STEM content areas.
This activity is designed to support a variety of STEM concepts: scientific …
This activity is designed to support a variety of STEM concepts: scientific method, making predictions, gathering and analyzing data, and developing conclusions based on experimentation. This activity draws on active student engagement, and is useful in many STEM content areas.
Move the sun, earth, moon and space station to see how it …
Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!
Move the sun, earth, moon and space station to see how it …
Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!
In this video segment from NOVA scienceNOW, learn about the effects of …
In this video segment from NOVA scienceNOW, learn about the effects of gravity as astrophysicist Neil deGrasse Tyson falls through a virtual hole through Earth's center.
This Physics resource was developed under the guidance and support of experienced …
This Physics resource was developed under the guidance and support of experienced high school teachers and subject matter experts. It is presented here in multiple formats: PDF, online, and low-cost print. Beginning with an introduction to physics and scientific processes and followed by chapters focused on motion, mechanics, thermodynamics, waves, and light, this book incorporates a variety of tools to engage and inspire students. Hands-on labs, worked examples, and highlights of how physics is applicable everywhere in the natural world are embedded throughout the book, and each chapter incorporates a variety of assessment types such as practice problems, performance tasks, and traditional multiple choice items. Additional instructor resources are included as well, including direct instruction presentations and a solutions manual.
Students apply their mathematics and team building skills to explore the concept …
Students apply their mathematics and team building skills to explore the concept of rocketry. They learn about design issues faced by aerospace engineers when trying to launch rocketships or satellites in order to land them safely in the ocean, for example. Students learn the value of designing within constraints while brainstorming a rocketry system using provided materials and a specified project budget. Throughout the design process, teamwork is emphasized since the most successful launches occur when groups work effectively to generate creative ideas and solutions to the rocket challenge.
Students gain first-hand experience on how friction affects motion. They build a …
Students gain first-hand experience on how friction affects motion. They build a hovercraft using air from a balloon to levitate a craft made from a compact disc (CD), learning that a bed of air under an object significantly reduces the friction as it slides over a surface.
These Interactive Physics Demonstrations were developed by MAJ James Bowen, MAJ Cathleen …
These Interactive Physics Demonstrations were developed by MAJ James Bowen, MAJ Cathleen Barker, MAJ Andrew Wilhelm, and others at the United States Military Academy for their University Physics course. Each activity is presented as a worksheet, which guides students through an experimental or observational process with questions.
After watching a 1940 film clip of the "Galloping Gertie" bridge collapse …
After watching a 1940 film clip of the "Galloping Gertie" bridge collapse and a teacher demo with a simple pendulum, student groups discuss and then research the idea of motion that repeats itself specifically the concepts of periodic and harmonic motion. They become aware of where and how these types of motion occur and affect them in everyday applications, both natural (seasons, tides, waves) and engineered (swings, clocks, mechanical systems). They learn the basic properties of this type of motion (period, amplitude, frequency) and how the rearrangement of the simple pendulum equation can be used to solve for gravitational acceleration, pendulum length and gravity. At lesson end, students are ready to conduct the associated activity during which they conduct experiments that utilize swinging Android® devices as pendulums.
Students learn about video motion capture technology, becoming familiar with concepts such …
Students learn about video motion capture technology, becoming familiar with concepts such as vector components, magnitudes and directions, position, velocity, and acceleration. They use a (free) classroom data collection and processing tool—the ARK Mirror—to visualize and record 3-D motion. The Augmented Reality Kinematics (ARK) Mirror software collects data via a motion detector. Using an Orbbec Astra Pro 3D camera or Microsoft Kinect (see note below), students can visualize and record a robust set of data and interpret them using statistical and graphical methods. This lesson introduces students to just one possible application of the ARK Mirror software—in the context of a high school physics class. Note: The ARK Mirror is ported to operate on an Orbbec platform. It may also be used with a Microsoft Kinect, although that Microsoft hardware has been discontinued. Refer to the Using ARK Mirror and Microsoft Kinect attachment for how to use the ARK MIrror software with Microsoft Kinect.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.