This course introduces thermodynamic principles; open and closed systems representative of engineering …
This course introduces thermodynamic principles; open and closed systems representative of engineering problems; and first and second law of thermodynamics with applications to engineering systems and design. Topics include: thermodynamic concepts, thermodynamic properties, the first law of thermodynamics, first law analysis for a control volume, the second law of thermodynamics, entropy, and second law analysis for a control volume.
Explore the properties of magnets by designing a device that can move …
Explore the properties of magnets by designing a device that can move as far as possible using only magnets to move it, and then design a machine that will stay in motion for the greatest period of time.
Kent Treadgold's 7th grade science class uses a hands-on project to learn …
Kent Treadgold's 7th grade science class uses a hands-on project to learn the abstract concept of density. They measure the mass and volume of different cylinders, create their own computerized spreadsheets for data, and enter the formula to calculate density. By the end of the project, they're able to conclude on their own that density will not change as the shape and size of an object changes, as long as the material it's made of stays the same.
A realistic mass and spring laboratory. Hang masses from springs and adjust …
A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.
This is an indoor lab that uses a boat simulation to demonstrate …
This is an indoor lab that uses a boat simulation to demonstrate the concepts of mass, volume and density, and their relationship to displacement. It is a problem solving activity that encourages student creativity resulting in a variety of valid solutions.
The purpose of this lesson is to help students understand the relationship …
The purpose of this lesson is to help students understand the relationship between the mass and the weight of an object. Students will study the properties of common materials and why airplanes use specific materials.
Students design, build and test model race cars made from simple materials …
Students design, build and test model race cars made from simple materials (lifesaver-shaped candies, plastic drinking straws, Popsicle sticks, index cards, tape) as a way to explore independent, dependent and control variables. They measure the changes in distance travelled with the addition of mass to the vehicles. Students also practice the steps of the engineering design process by brainstorming, planning, building, testing, and improving their "mint-mobiles."
This activity is a lab where students make measurements of a mass …
This activity is a lab where students make measurements of a mass on a spring and work through appropriate calculations dealing with simple harmonic motion.
Mechanical energy is the most easily understood form of energy for students. …
Mechanical energy is the most easily understood form of energy for students. When there is mechanical energy involved, something moves. Mechanical energy is a very important concept to understand. Engineers need to know what happens when something heavy falls from a long distance changing its potential energy into kinetic energy. Automotive engineers need to know what happens when cars crash into each other, and why they can do so much damage, even at low speeds! Our knowledge of mechanical energy is used to help design things like bridges, engines, cars, tools, parachutes, and even buildings! In this lesson, students will learn how the conservation of energy applies to impact situations such as a car crash or a falling object.
Build your own system of heavenly bodies and watch the gravitational ballet. …
Build your own system of heavenly bodies and watch the gravitational ballet. With this orbit simulator, you can set initial positions, velocities, and masses of 2, 3, or 4 bodies, and then see them orbit each other.
Neutrinos are electrically neutral and the mass of the neutrino is tiny. …
Neutrinos are electrically neutral and the mass of the neutrino is tiny. As they travel through the universe they interact extremely rarely with other particles.
Given an assortment of unknown metals to identify, student pairs consider what …
Given an assortment of unknown metals to identify, student pairs consider what unique intrinsic (aka intensive) metal properties (such as density, viscosity, boiling or melting point) could be tested. For the provided activity materials (copper, aluminum, zinc, iron or brass), density is the only property that can be measured so groups experimentally determine the density of the "mystery" metal objects. They devise an experimental procedure to measure mass and volume in order to calculate density. They calculate average density of all the pieces (also via the graphing method if computer tools area available). Then students analyze their own data compared to class data and perform error analysis. Through this inquiry-based activity, students design their own experiments, thus experiencing scientific investigation and experimentation first hand. A provided PowerPoint(TM) file and information sheet helps to introduce the five metals, including information on their history, properties and uses.
In this lesson, students will explore motion, rockets and rocket motion while …
In this lesson, students will explore motion, rockets and rocket motion while assisting Spacewoman Tess, Spaceman Rohan and Maya in their explorations. They will first learn some basic facts about vehicles, rockets and why we use them. Then, the students will discover that the motion of all objects including the flight of a rocket and movement of a canoe is governed by Newton's three laws of motion.
The purpose of this activity is to demonstrate Newton's third law of …
The purpose of this activity is to demonstrate Newton's third law of motion which states that every action has an equal and opposite reaction through a small wooden car. The Newton cars show how action/reaction works and how the mass of a moving object affects the acceleration and force of the system. Subsequently, the Newton cars provide students with an excellent analogy for how rockets actually work.
David explains what affects the period of a mass on a spring …
David explains what affects the period of a mass on a spring (i.e. mass and spring constant). He also explains what does not affect the period of a mass on a spring (i.e. amplitude and gravitational acceleration). Created by David SantoPietro.
In this activity, students will learn about Newton's 2nd Law of Motion. …
In this activity, students will learn about Newton's 2nd Law of Motion. They will learn that the force required to move a book is proportional to the weight of the book. Engineers use this relationship to determine how much force they need to move an airplane.
From drinking fountains at playgrounds, water systems in homes, and working bathrooms …
From drinking fountains at playgrounds, water systems in homes, and working bathrooms at schools to hydraulic bridges and levee systems, fluid mechanics are an essential part of daily life. Fluid mechanics, the study of how forces are applied to fluids, is outlined in this unit as a sequence of two lessons and three corresponding activities. The first lesson provides a basic introduction to Pascal's law, Archimedes' principle and Bernoulli's principle and presents fundamental definitions, equations and problems to solve with students, as well as engineering applications. The second lesson provides a basic introduction to above-ground storage tanks, their pervasive use in the Houston Ship Channel, and different types of storage tank failure in major storms and hurricanes. The unit concludes with students applying what they have learned to determine the stability of individual above-ground storage tanks given specific storm conditions so they can analyze their stability in changing storm conditions, followed by a project to design their own storage tanks to address the issues of uplift, displacement and buckling in storm conditions.
In this activity, learners work in groups to determine the mass and …
In this activity, learners work in groups to determine the mass and volume of four samples: glass marbles, steel washers or nuts, pieces of pine wood, and pieces of PVC pipe. Learners then plot the data points on a large class graph of mass vs. volume to discover that data points for a particular material form a straight line, the slope of which gives the density of the material.
Blast a Buick out of a cannon! Learn about projectile motion by …
Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass. Add air resistance. Make a game out of this simulation by trying to hit a target.
Blast a Buick out of a cannon! Learn about projectile motion by …
Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass. Add air resistance. Make a game out of this simulation by trying to hit a target.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.