Short Description: The book is most suitable for a one-term, introductory engineering …
Short Description: The book is most suitable for a one-term, introductory engineering thermodynamics course at the undergraduate level. It may also be used for self-learning of fundamental concepts of classical thermodynamics.
Long Description: This open book is written with a goal to support students’ learning of fundamental concepts and engineering applications of classical thermodynamics. It features concise explanations of key concepts, step-by-step solutions to engineering examples, and interactive practice problems. The book is most suitable for a one-term, introductory engineering thermodynamics course at the undergraduate level. It may also be used as self-learning materials or a supplement to other thermodynamics books.
Word Count: 49751
(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)
Students gain experience using a spreadsheet and working with others to decide …
Students gain experience using a spreadsheet and working with others to decide how to conduct their model 'experiments' with the NASA GEEBITT (Global Equilibrium Energy Balance Interactive Tinker Toy). This activity helps students become more familiar with the physical processes that made Earth's early climate so different from that of today. Students also acquire first-hand experience with a limitation in modeling, specifically, parameterization of critical processes.
Students use the STELLA program to create hierarchies of models of increasing …
Students use the STELLA program to create hierarchies of models of increasing complexity to understand the absorption of solar energy by the Earth and its radiation of that energy back to space.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
IDS.410J Modeling and Assessment for Policy explores how scientific information and quantitative …
IDS.410J Modeling and Assessment for Policy explores how scientific information and quantitative models can be used to inform policy decision-making. Students will develop an understanding of quantitative modeling techniques and their role in the policy process through case studies and interactive activities. The course addresses issues such as analysis of scientific assessment processes, uses of integrated assessment models, public perception of quantitative information, methods for dealing with uncertainties, and design choices in building policy-relevant models. Examples used in this class focus on models and information used in earth system governance.
The heart of this activity is a laboratory investigation that models the …
The heart of this activity is a laboratory investigation that models the production of silicon. Students learn about silicon and its sources, uses, properties, importance in the fields of photovoltaics (solar cells/renewable energy) and integrated circuits industries, and, to a limited extent, environmental impact of silicon production.
Objective: To design a car that is propelled only by a mousetrap …
Objective: To design a car that is propelled only by a mousetrap that will travel the greatest average distance. In other words, the car should use energy to move. This energy is only created by the spring action of the trap which is connected to an axle of one of your wheels by a non-elastic string / thread.
Mechanical energy is the most easily understood form of energy for students. …
Mechanical energy is the most easily understood form of energy for students. When there is mechanical energy involved, something moves. Mechanical energy is a very important concept to understand. Engineers need to know what happens when something heavy falls from a long distance changing its potential energy into kinetic energy. Automotive engineers need to know what happens when cars crash into each other, and why they can do so much damage, even at low speeds! Our knowledge of mechanical energy is used to help design things like bridges, engines, cars, tools, parachutes, and even buildings! In this lesson, students will learn how the conservation of energy applies to impact situations such as a car crash or a falling object.
Build your own system of heavenly bodies and watch the gravitational ballet. …
Build your own system of heavenly bodies and watch the gravitational ballet. With this orbit simulator, you can set initial positions, velocities, and masses of 2, 3, or 4 bodies, and then see them orbit each other.
Through two lessons and four activities, students learn about nanotechnology, its extreme …
Through two lessons and four activities, students learn about nanotechnology, its extreme smallness, and its vast and growing applications in our world. Embedded within the unit is a broader introduction to the field of material science and engineering and its vital role in nanotechnology advancement. Engaging mini-lab activities on ferrofluids, quantum dots and gold nanoparticles introduce students to specific fields within nanoscience and help them understand key concepts as the basis for thinking about engineering and everyday applications that use next-generation technology nanotechnology.
Parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming …
Parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from nanoscale continuously to macroscale. Topics include the energy levels, the statistical behavior and internal energy, energy transport in the forms of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at nanoscale and their appropriate descriptions, with applications in nano- and microtechnology.
Natural gas (NG) is the most versatile and fastest-growing fossil fuel—used in …
Natural gas (NG) is the most versatile and fastest-growing fossil fuel—used in all areas of the economy (industrial, residential, commercial, and transportation). It is a depletable, non-renewable resource composed primarily of methane gas (CH4), with smaller amounts of natural gas liquids, carbon dioxide (CO2), and water vapor. While natural gas is the cleanest-burning fossil fuel, it still produces CO2 when combusted. And because natural gas is primarily methane, it is itself a very potent greenhouse gas when it is emitted to the atmosphere uncombusted.
This homework problem introduces students to Marcellus shale natural gas and how …
This homework problem introduces students to Marcellus shale natural gas and how an unconventional reservoir rock can become an attractive hydrocarbon target. It is designed to expand students' understanding of hydrocarbon resources by introducing an unconventional natural gas play. Students explore the technological factors that make conventional source rocks attractive reservoir rocks and how this advance impacts both U.S. energy supply and the environment.
In this activity, students analyze actual net radiation data from their professor's …
In this activity, students analyze actual net radiation data from their professor's field site in Northern Manitoba, Canada. They use this data to assess when the site has a radiation surplus and when it has a deficit. They use this data to estimate the time of the temperature minimum. They then think about what they've learned about seasonal cycles in insolation to predict how these patterns would shift at a different time of year.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this hands-on activity, students examine how the orientation of a photovoltaic …
In this hands-on activity, students examine how the orientation of a photovoltaic (PV) panel -- relative to the position of the sun -- affects the energy-efficiency of the panel.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.