This Ology game site contains rules and a board for a board …
This Ology game site contains rules and a board for a board game dealing with extinction, particularly the modern biodiversity crisis. The players need to read endangered species facts from the board to answer questions on the spaces that they land in so that they can progress. Users can follow links to what to do and materials needed for the game.
Developed for the second grade. A biodome is a self-sustaining habitat for …
Developed for the second grade. A biodome is a self-sustaining habitat for plants. Students will make a biodome in a recycled soda bottle and watch as their seeds grow. Students will observe and understand how the water in the biodome continues to recycle itself through condensation and evaporation.Biology In Elementary Schools is a Saint Michael's College student project. The teaching ideas on this page have been found, refined, and developed by students in a college-level course on the teaching of biology at the elementary level. Unless otherwise noted, the lesson plans have been tried at least once by students from our partner schools. This wiki has been established to share ideas about teaching biology in elementary schools. The motivation behind the creation of this page is twofold: 1. to provide an outlet for the teaching ideas of a group of college educators participating in a workshop-style course; 2. to provide a space where anyone else interested in this topic can place their ideas.
Students explore the biosphere's environments and ecosystems, learning along the way about …
Students explore the biosphere's environments and ecosystems, learning along the way about the plants, animals, resources and natural cycles of our planet. Over the course of lessons 2-6, students use their growing understanding of various environments and the engineering design process to design and create their own model biodome ecosystems - exploring energy and nutrient flows, basic needs of plants and animals, and decomposers. Students learn about food chains and food webs. They are introduced to the roles of the water, carbon and nitrogen cycles. They test the effects of photosynthesis and transpiration. Students are introduced to animal classifications and interactions, including carnivore, herbivore, omnivore, predator and prey. They learn about biomimicry and how engineers often imitate nature in the design of new products. As everyday applications are interwoven into the lessons, students consider why a solid understanding of one's environment and the interdependence within ecosystems can inform the choices we make and the way we engineer our communities.
This course is designed for advanced undergraduate and graduate students with an …
This course is designed for advanced undergraduate and graduate students with an interest in using primary research literature to discuss and learn about current research around sulfur biogeochemistry and astrobiology.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"The gut microbial community, called the gut microbiota, plays an important role in health for both humans and animals. The bacterial members of this community are the most numerous and consequently get the most attention in research. However, there are often overlooked but important fungi, viruses, archaea, and protozoa in the microbiota too. The fungal subset of a microbiota is called the mycobiota, and it is particularly understudied in birds. To close this gap, a recent study comprehensively characterized the mycobiota of chickens bred for meat. While gut bacterial communities typically stabilize with age, the chicken mycobiota was dynamic over time with no clear pattern of successive changes and low overall diversity. The upper gastrointestinal (GI) tract mycobiota was more diverse than the lower tract mycobiota, and just 25 core fungal groups accounted for more than 85% of the fungal population in each section of the GI tract..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This exercise contains two interrelated modules that introduce students to modern biological …
This exercise contains two interrelated modules that introduce students to modern biological techniques in the area of Bioinformatics, which is the application of computer technology to the management of biological information. The need for Bioinformatics has arisen from the recent explosion of publicly available genomic information, such as that resulting from the Human Genome Project.
On its own, a huge DNA sequence is a meaningless pile of …
On its own, a huge DNA sequence is a meaningless pile of data — so, how do biologists figure out what it means? They turn to the power of bioinformatics! In this episode, we’ll learn what bioinformatics is, how it works, and how scientists have used it to better understand everything from evolution to a viral epidemic. Chapters: Introduction: Pizza Data Bioinformatics Algorithms The Human Genetic Code The BRCA1 Gene Transcriptomes The Zika Virus Bioinformatics & Programming Review & Credits Credits
This course is a continuation of Bioinformatics I. Topics include gene expression, …
This course is a continuation of Bioinformatics I. Topics include gene expression, microarrays, next- generation sequencing methods, RNA-seq, large genomic projects, protein structure and stability, protein folding, and computational structure prediction of proteins; proteomics; and protein-nucleic acid interactions. The lab component includes R-based statistical data analysis on large datasets, introduction to big data analysis tools, protein visualization software, internet-based tools and high-level programming languages.
This interdisciplinary course provides a hands-on approach to students in the topics …
This interdisciplinary course provides a hands-on approach to students in the topics of bioinformatics and proteomics. Lectures and labs cover sequence analysis, microarray expression analysis, Bayesian methods, control theory, scale-free networks, and biotechnology applications. Designed for those with a computational and/or engineering background, it will include current real-world examples, actual implementations, and engineering design issues. Where applicable, engineering issues from signal processing, network theory, machine learning, robotics and other domains will be expounded upon.
This course examines the chemical and physical properties of the cell and …
This course examines the chemical and physical properties of the cell and its building blocks, with special emphasis on the structures of proteins and principles of catalysis, as well as the chemistry of organic / inorganic cofactors required for chemical transformations within the cell. Topics encompass the basic principles of metabolism and regulation in pathways, including glycolysis, gluconeogenesis, fatty acid synthesis / degradation, pentose phosphate pathway, Krebs cycle and oxidative phosphorylation.
Course Format This OCW Scholar course, designed for independent study, is closely modeled on the course taught on the MIT campus. The on-campus course has two types of class sessions: Lectures and recitations. The lectures meet three times each week and recitations meet once a week. In recitations, an instructor or Teaching Assistant elaborates on concepts presented in lecture, working through new examples with student participation, and answers questions. MIT students who take the corresponding residential class typically report an average of 10–15 hours spent each week, including lectures, recitations, readings, homework, and exams. All students are encouraged to supplement the textbooks and readings with their own research. The Scholar course has three major learning units, called Modules. Each module has been divided into a sequence of lecture sessions that include:
Textbook Readings Lecture Notes or Storyboards A video by Professor JoAnne Stubbe or Professor John Essigmann Problem Sets and solutions
To help guide your learning, each of these problem sets are accompanied by Problem Solving Videos where Dr. Bogdan Fedeles solves one of the problems from the set.
This course is an advanced treatment of biochemical mechanisms that underlie biological …
This course is an advanced treatment of biochemical mechanisms that underlie biological processes. Topics include macromolecular machines such as the ribosome, the proteasome, fatty acid synthases as a paradigm for polyketide synthases and non-ribosomal polypeptide synthases, and polymerases. Emphasis will be given to the experimental methods used to unravel how these processes fit into the cellular context as well as the coordinated regulation of these processes.
Everywhere you look on Earth, you’ll find wonderful and diverse living things, …
Everywhere you look on Earth, you’ll find wonderful and diverse living things, from tiny tardigrades to soaring sequoias. And incredibly, everything alive today, and everything that’s ever lived, is related. In this episode of Crash Course Biology, we reveal how the evolutionary relationships between living things define their place on a single, great Tree of Life, and we learn what that tree can tell us about our own place among the planet’s biodiversity.
Chapters: Ravens & Rhinos The Tree of Life Prokaryotes Eukaryotes Plants Fungi Animals Review & Credits Credits
This course illustrates how knowledge and principles of biology, biochemistry, and engineering …
This course illustrates how knowledge and principles of biology, biochemistry, and engineering are integrated to create new products for societal benefit. It uses a case study format to examine recently developed products of pharmaceutical and biotechnology industries: how a product evolves from initial idea, through patents, testing, evaluation, production, and marketing. Emphasizes scientific and engineering principles; the responsibility scientists, engineers, and business executives have for the consequences of their technology; and instruction and practice in written and oral communication. The topic focus of this class will vary from year to year. This version looks at inflammation underlying many diseases, specifically its role in cancer, diabetes, and cardiovascular disease.
This course covers sensing and measurement for quantitative molecular/cell/tissue analysis, in terms …
This course covers sensing and measurement for quantitative molecular/cell/tissue analysis, in terms of genetic, biochemical, and biophysical properties. Methods include light and fluorescence microscopies; electro-mechanical probes such as atomic force microscopy, laser and magnetic traps, and MEMS devices; and the application of statistics, probability and noise analysis to experimental data. Enrollment preference is given to juniors and seniors.
In this course problems from biological engineering are used to develop structured …
In this course problems from biological engineering are used to develop structured computer programming skills and explore the theory and practice of complex systems design and construction. The official course Web site can be viewed at: BE.180 Biological Engineering Programming.
This is a syllabus for a first-semester introductory biology class, including reading …
This is a syllabus for a first-semester introductory biology class, including reading links for current news articles related to the course topics as well as an OpenStax textbook.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.