Updating search results...

Search Resources

4297 Results

View
Selected filters:
  • Engineering
Brave New World - Connectivity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The trifecta of globalization, urbanization and digitization have created new opportunities and challenges across our nation, cities, boroughs and urban centers. Cities are in a unique position at the center of commerce and technology becoming hubs for innovation and practical application of emerging technology. In this rapidly changing 24/7 digitized world, city governments worldwide are leveraging innovation and technology to become more effective, efficient, transparent and to be able to better plan for and anticipate the needs of its citizens, businesses and community organizations. This class will provide the framework for how cities and communities can become smarter and more accessible with technology and more connected.

Subject:
Applied Science
Business and Communication
Communication
Engineering
Social Science
Material Type:
Reading
Provider:
CUNY Academic Works
Provider Set:
Medgar Evers College
Author:
Binda, Rhonda S.
Date Added:
08/14/2020
Breaking Beams
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about stress and strain by designing and building beams using polymer clay. They compete to find the best beam strength to beam weight ratio, and learn about the trade-offs engineers make when designing a structure.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Breaking the Mold
Read the Fine Print
Educational Use
Rating
0.0 stars

In this math activity, students conduct a strength test using modeling clay, creating their own stress vs. strain graphs, which they compare to typical steel and concrete graphs. They learn the difference between brittle and ductile materials and how understanding the strength of materials, especially steel and concrete, is important for engineers who design bridges and structures.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Valenti
Denali Lander
Denise W. Carlson
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
Date Added:
02/19/2009
Breakwaters and Closure Dams
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Design and construction of breakwaters and closure dams in estuaries and rivers. Functional requirements, determination of boundary conditions, spatial and constructional design and construction aspects of breakwaters and dams consisting of rock, sand and caissons.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Assessment
Lecture Notes
Reading
Textbook
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
Ir. H.J. Verhagen
Date Added:
03/03/2016
Breathe In, Breathe Out
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the respiratory system, the lungs and air. They learn about how the lungs and diaphragm work, how air pollution affects lungs and respiratory functions, some widespread respiratory problems, and how engineers help us stay healthy by designing machines and medicines that support respiratory health and function.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jay Shah
Malinda Schaefer Zarske
Date Added:
09/18/2014
Breathing Cells
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use a simple pH indicator to measure how much CO2 is produced during respiration, at rest and after exercising. They begin by comparing some common household solutions in order to determine the color change of the indicator. They review the concepts of pH and respiration and extend their knowledge to measuring the effectiveness of bioremediation in the environment.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Kaelin Cawley
Malinda Schaefer Zarske
Date Added:
10/14/2015
The Bridge Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

In this interactive activity from the Building Big Web site, use your knowledge of bridge design to match the right bridge to the right location in a fictitious city.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Interactive
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
01/22/2004
Bridge History Timeline
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This timeline includes key bridges and events in bridge engineering, images, links, and project references. It provides easier access for students to a more comprehensive view of bridge history, and how it forms the base of current practice and understanding of bridge analysis and design.

Subject:
Applied Science
Engineering
Material Type:
Interactive
Reading
Author:
Brian Brenner
Date Added:
04/05/2023
Bridge Types: Tensile & Compressive Forces
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore how tension and compression forces act on three different bridge types. Using sponges, cardboard and string, they create models of beam, arch and suspension bridges and apply forces to understand how they disperse or transfer these loads.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Valenti
Denali Lander
Denise W. Carlson
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Bridges
Read the Fine Print
Rating
0.0 stars

Bridges come in a wide variety of sizes, shapes, and lengths and are found all over the world. It is important that bridges are strong so they are safe to cross. Design and build a your own model bridge. Test your bridge for strength using a force sensor that measures how hard you pull on your bridge. By observing a graph of the force, determine the amount of force needed to make your bridge collapse.

Subject:
Applied Science
Chemistry
Engineering
Mathematics
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
05/21/2012
Bridges
Read the Fine Print
Educational Use
Rating
0.0 stars

Through a five-lesson series that includes numerous hands-on activities, students are introduced to the importance and pervasiveness of bridges for connecting people to resources, places and other people, with references to many historical and current-day examples. In learning about bridge types arch, beam, truss and suspension students explore the effect of tensile and compressive forces. Students investigate the calculations that go into designing bridges; they learn about loads and cross-sectional areas by designing and testing the strength of model piers. Geology and soils are explored as they discover the importance of foundations, bearing pressure and settlement considerations in the creation of dependable bridges and structures. Students learn about brittle and ductile material properties. Students also learn about the many cost factors that comprise the economic considerations of bridge building. Bridges are unique challenges that take advantage of the creative nature of engineering.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Bridging the Gaps
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a brief history of bridges as they learn about the three main bridge types: beam, arch and suspension. They are introduced to two natural forces tension and compression common to all bridges and structures. Throughout history, and today, bridges are important for connecting people to resources, places and other people. Students become more aware of the variety and value of bridges around us in our everyday lives.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christopher Valenti
Denali Lander
Denise W. Carlson
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
Date Added:
09/18/2014
Bridging to Polymers: Thermoset Lab
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as engineers to learn about the strengths of various epoxy-amine mixtures and observe the unique characteristics of different mixtures of epoxies and hardeners. Student groups make and optimize thermosets by combining two chemicals in exacting ratios to fabricate the strongest and/or most flexible thermoset possible.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Rohde
Don McGowan
Date Added:
09/18/2014
Brief overview on Carbon fibre Reinforced Concrete
Unrestricted Use
CC BY
Rating
0.0 stars

Carbon fiber reinforced concrete (CFR) is a type of concrete that is made up of carbon fiber strands which are embedded in the concrete. This makes the concrete stronger as well as more resistant to damage. CFR is often used in areas where durability and strength are important, such as bridges and buildings.

Subject:
Engineering
Material Type:
Assessment
Author:
Aditya L
Date Added:
03/31/2023
Broken Bones & Biomedical Materials
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concept and steps of the engineering design process and taught how to apply it. Students first receive some background information about biomedical engineering (aka bioengineering). Then they learn about material selection and material properties by using a provided guide. In small groups, students learn of their design challenge (improve a cast for a broken arm), brainstorm solutions, are given materials and create prototypes. To finish, teams communicate their design solutions through class poster presentations.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Angela Lamoureux
Connie Boyd
Emine Cagine
Hilary McCarthy
Katherine Youmans
Robin Scarrell
Suzanne Sontgerath
Terri Camesano
Date Added:
09/18/2014
Bubbles and Biosensors
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work in groups to create soap bubbles on a smooth surface, recording their observations from which they formulate theories to explain what they see (color swirls on the bubble surfaces caused by refraction). Then they apply this theory to thin films in general, including porous films used in biosensors, listing factors that could change the color(s) that become visible to the naked eye, and learn how those factors can be manipulated to give information on gene detection. Finally (by experimentation or video), students see what happens when water is dropped onto the surface of a Bragg mirror.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caleb Swartz
Date Added:
09/18/2014
Bubbling Plants
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn a simple technique for quantifying the amount of photosynthesis that occurs in a given period of time, using a common water plant (Elodea). They can use this technique to compare the amounts of photosynthesis that occur under conditions of low and high light levels. Before they begin the experiment, however, students must come up with a well-worded hypothesis to be tested. After running the experiment, students pool their data to get a large sample size, determine the measures of central tendency of the class data, and then graph and interpret the results.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/26/2008
Buckling of Structures
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course is concerned with the concept of structural stability. This concept is applied to discrete and continuous basic structural elements (beams, frames, plates and shells). The fundamental concepts are introduced on the basis of the governing differential equations. The course includes the following topics:

*Equations of motion, nonlinear equilibrium equations, stationary potential energy criterion.
*Stability analysis for the basic structural elements.
*Design methods for stability of basic structural elements.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
Dr.ir. R. de Breuker
Date Added:
07/30/2018
Build It Yourself: Satellite!
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

"Build It Yourself: Satellite!" is an online Flash game hosted on the James Webb Space Telescope website. The goal of the game is to explain the decision-making process of satellite design. The user can choose to build a "small," "medium," or "large" astronomy satellite. The user then selects science goals, wavelength, instruments, and optics. The satellite is then launched on the appropriate rocket (shown via an animation). Finally, the user is shown what their satellite might look like, as well as what kind of data it might collect, via examples from similar real-life satellites. Satellites range from small X-ray missions without optics (like the Rossi X-ray Timing Explorer) to large missions with segmented mirrors (like the James Webb Space Telescope).

Subject:
Applied Science
Engineering
Geoscience
Physical Science
Physics
Space Science
Technology
Material Type:
Activity/Lab
Game
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
Build & Play Binary Digital Trumpets
Read the Fine Print
Educational Use
Rating
0.0 stars

Students wire up their own digital trumpets using a MaKey MaKey. They learn the basics of wiring a breadboard and use the digital trumpets to count in the binary number system. Teams are challenged to play songs using the binary system and their trumpets, and then present them in a class concert.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Sabina Schill
Date Added:
01/23/2018