Updating search results...

Search Resources

281 Results

View
Selected filters:
  • Concord Consortium
Concord Consortium: Excited States and Photons
Read the Fine Print
Rating
0.0 stars

This concept-building activity contains a set of sequenced simulations for investigating how atoms can be excited to give off radiation (photons). Students explore 3-dimensional models to learn about the nature of photons as "wave packets" of light, how photons are emitted, and the connection between an atom's electron configuration and how it absorbs light. Registered users are able to use free data capture tools to take snapshots, drag thumbnails, and submit responses. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Applied Science
Chemistry
Education
Engineering
Life Science
Mathematics
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
08/21/2012
Concord Consortium: Making and Breaking Bonds
Read the Fine Print
Rating
0.0 stars

In this interactive activity, learners explore factors that cause atoms to form (or break) bonds with each other. The first simulation depicts a box containing 12 identical atoms. Using a slider to add heat, students can see the influence of temperature on formation of diatomic bonds. Simulations #2 and #3 introduce learners to reactions involving two types of atoms. Which atom forms a diatomic molecule more easily, and why? The activity concludes as students explore paired atoms (molecules). In this simulation they compare the amount of energy needed to break the molecular bonds to the energy needed to form the bonds. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Applied Science
Chemistry
Physical Science
Physics
Technology
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
05/16/2011
Concord Consortium: Probability Clouds
Read the Fine Print
Rating
0.0 stars

In this interactive activity, learners build computer models of atoms by adding or removing electrons, protons, and neutrons. It presents the orbital model of an atom: a nucleus consisting of protons and neutrons with electrons surrounding it in regions of high probability called orbitals. Guided tasks are provided, such as constructing a lithium atom and a carbon-12 atom in the fewest possible steps. The activity concludes with a model for building a charged hydrogen atom (an ion). Within each task, students take snapshots of their work product and answer probative questions. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Technology
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
05/17/2011
Concord Consortium: Solar Oven
Read the Fine Print
Rating
0.0 stars

Elementary grade students investigate heat transfer in this activity to design and build a solar oven, then test its effectiveness using a temperature sensor. It blends the hands-on activity with digital graphing tools that allow kids to easily plot and share their data. Included in the package are illustrated procedures and extension activities. Note Requirements: This lesson requires a "VernierGo" temperature sensing device, available for ~ $40. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. The Consortium develops digital learning innovations for science, mathematics, and engineering.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
04/02/2013
Conduction: Heat Conduction Through Materials
Unrestricted Use
CC BY
Rating
0.0 stars

The heat conductivity of a solid material defines how fast heat will flow through it. You can probably think of several everyday examples of materials with high (fast) conductivity or low (slow) conductivity. This model illustrates the effect of different conductivities by placing different materials between a hot and a cold object and graphing the changing temperatures.

Subject:
Applied Science
Physical Science
Material Type:
Simulation
Provider:
Concord Consortium
Provider Set:
Concord Consortium
Author:
Concord Consortium
Date Added:
05/14/2021
Conduction: The Effect of Temperature Difference
Unrestricted Use
CC BY
Rating
0.0 stars

The rate of heat flow between two objects is proportional to their difference in temperature. One experiences this every day, with stoves, outdoor weather and touching things. If you touch something that's the same temperature as your hand, there's no heat flow at all. This model allows you to adjust the temperature difference between two objects and observe the graph of heat flow.

Subject:
Applied Science
Physical Science
Material Type:
Simulation
Provider:
Concord Consortium
Provider Set:
Concord Consortium
Author:
Concord Consortium
Date Added:
05/14/2021
Conduction: The Effect of Wall Thickness on Heat Conduction
Unrestricted Use
CC BY
Rating
0.0 stars

Heat flows through solids at rates measured by their conductivity. The rate of heat flow is also proportional to the thickness of the material. This model compares the rate of heat transfer between two objects when they are separated by walls of different thickness.

Subject:
Applied Science
Physical Science
Material Type:
Simulation
Provider:
Concord Consortium
Provider Set:
Concord Consortium
Author:
Concord Consortium
Date Added:
05/14/2021
Conflicting Selection Pressures
Read the Fine Print
Rating
0.0 stars

Explore how populations change over time in a NetLogo model of sheep and grass. Experiment with the initial number of sheep, the sheep birthrate, the amount of energy sheep gain from the grass, and the rate at which the grass re-grows. Remove sheep that have a particular trait (better teeth) from the population, then watch what happens to the sheep teeth trait in the population as a whole. Consider conflicting selection pressures to make predictions about other instances of natural selection.

Subject:
Ecology
Education
Forestry and Agriculture
Geoscience
Life Science
Physical Science
Material Type:
Activity/Lab
Data Set
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
01/13/2012
Convection: Blowing Wind
Unrestricted Use
CC BY
Rating
0.0 stars

If there are air leaks in a house, you might expect that their effect would be magnified on a windy day. The wind creates greater air pressure on the windward side of the building and forces air in through the leaks. At the same time, the pressure on the other side of the building is lowered, pulling air out through leaks. This model has a fan blowing against a building. Air motion is shown with arrows. Open and close the "windows" in the building and observe the results.

Subject:
Applied Science
Physical Science
Material Type:
Simulation
Provider:
Concord Consortium
Provider Set:
Concord Consortium
Author:
Concord Consortium
Date Added:
05/14/2021
Convection: Forced Convection
Unrestricted Use
CC BY
Rating
0.0 stars

Convection refers to transfer of heat by a fluid material (such as air or water) moving from one place to another. The convection is forced if the fluid motion is caused by a fan or a pump while natural convection is the result of density differences.

Subject:
Applied Science
Physical Science
Material Type:
Simulation
Provider:
Concord Consortium
Provider Set:
Concord Consortium
Author:
Concord Consortium
Date Added:
05/14/2021
Convection: Natural Convection
Unrestricted Use
CC BY
Rating
0.0 stars

Conduction of heat refers to the transfer of heat through a solid. Convection refers to the transfer of heat by a fluid material (such as air or water) moving from one place to another. Warm air is less dense than cold air, so it rises and cold air sinks. This is called natural convection. Air is constantly circulating indoors and outdoors, moving heat from one place to another. With this model you can compare how conduction and convection transfer heat.

Subject:
Applied Science
Physical Science
Material Type:
Simulation
Provider:
Concord Consortium
Provider Set:
Concord Consortium
Author:
Concord Consortium
Date Added:
05/14/2021
Convection: Natural Convection Inverted
Unrestricted Use
CC BY
Rating
0.0 stars

The convection of heat in air happens naturally because warmer air is less dense and rises, causing air circulation in many situations. But not always! Air can stratify, with warmer air up high and cooler air down low. With this model you can explore how convection works if the heat source is near the ceiling of a room. You can also compare it to conduction in the same setting.

Subject:
Applied Science
Physical Science
Material Type:
Simulation
Provider:
Concord Consortium
Provider Set:
Concord Consortium
Author:
Concord Consortium
Date Added:
05/14/2021
Convection: Slow Down Convection
Unrestricted Use
CC BY
Rating
0.0 stars

Air circulates quickly and easily if there are temperature differences to drive its motion. This may be desirable in a room, but in insulated walls and ceilings air circulation is a problem, since it transfers heat. Explore the effect of multiple barriers on the amount of convection and apply this to how insulation should be designed.

Subject:
Applied Science
Physical Science
Material Type:
Simulation
Provider:
Concord Consortium
Provider Set:
Concord Consortium
Author:
Concord Consortium
Date Added:
05/14/2021
Convection: The Stack Effect
Unrestricted Use
CC BY
Rating
0.0 stars

Most buildings have leaky places where air can enter or escape -- around windows, ceiling openings like pipes, wires or chimneys, and construction joints such as where the wall meets the floor or the floor rests on the foundation. The size and location of these leaks strongly affects the heating and cooling load. Use this model to experiment with wall and roof leaks in a house with a heater where the air can circulate freely.

Subject:
Applied Science
Physical Science
Material Type:
Simulation
Provider:
Concord Consortium
Provider Set:
Concord Consortium
Author:
Concord Consortium
Date Added:
05/14/2021
Crookes Tube
Unrestricted Use
CC BY
Rating
0.0 stars

Experiment with a simulated Crookes tube for qualitative results similar to Thomson's experiments in which the electron was discovered.

Subject:
Physical Science
Material Type:
Simulation
Provider:
Concord Consortium
Provider Set:
Concord Consortium
Author:
Concord Consortium
Date Added:
05/14/2021
¿Cómo será el clima de la Tierra en el futuro?
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

El módulo de Clima de High-Adventure Science tiene cinco actividades. El módulo explora la pregunta, "¿Cómo será el clima de la Tierra en el futuro?" A través de una serie de preguntas guiadas, explorarás las interacciones entre los factores que afectan el clima de la Tierra. Explora los datos de temperatura de núcleos de hielo, sedimentos y satélites, y los datos de gases de efecto invernadero de las mediciones atmosféricas, realiza experimentos con modelos computacionales y escucha de un científico del clima que trabaja para responder la misma pregunta. No podrás contestar la pregunta al final del módulo, pero podrás explicar cómo los científicos están seguros de que la Tierra se está calentando sin tener la certeza absoluta de cuánto se calentará.

Subject:
Geology
Physical Science
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium
Author:
Concord Consortium
Date Added:
05/14/2021
DNA to Protein
Read the Fine Print
Rating
0.0 stars

Explore the relationship between the genetic code on the DNA strand and the resulting protein and rudimentary shape it forms. Through models of transcription and translation, you will discover this relationship and the resilience to mutations built into our genetic code. Start by exploring DNA's double helix with an interactive 3D model. Highlight base pairs, look at one or both strands, and turn hydrogen bonds on or off. Next, watch an animation of transcription, which creates RNA from DNA, and translation, which 'reads' the RNA codons to create a protein.

Subject:
Genetics
Life Science
Material Type:
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
01/13/2012