Students further their understanding of the engineering design process (EDP) while applying …
Students further their understanding of the engineering design process (EDP) while applying researched information on transportation technology, materials science and bioengineering. Students are given a fictional client statement (engineering challenge) and directed to follow the steps of the EDP to design prototype patient safety systems for small-size model ambulances. While following the steps of the EDP, students identify suitable materials and demonstrate two methods of representing solutions to the design challenge (scale drawings and small-scale prototypes). A successful patient safety system meets all of the project's functions and constraints, including the model patient (a raw egg) "surviving" a front-end collision test with a 1:8 ramp pitch.
Students act as Mars exploratory rover engineers. They evaluate rover equipment options …
Students act as Mars exploratory rover engineers. They evaluate rover equipment options and determine what parts fit in a provided NASA budget. With a given parts list, teams use these constraints to design for their rover. The students build and display their edible rover at a concluding design review.
The purpose of this activity is to recreate the classic egg-drop experiment …
The purpose of this activity is to recreate the classic egg-drop experiment with an analogy to the Mars rover landing. The concept of terminal velocity will be introduced, and students will perform several velocity calculations. Also, students will have to design and build their lander within a pre-determined budget to help reinforce a real-world design scenario.
During this lesson, students will learn about emergency preparedness during World War …
During this lesson, students will learn about emergency preparedness during World War I and the Apollo mission, equipping them to participate in a challenge to design their own kit.
In this activity learners work in pairs or small groups to evaluate …
In this activity learners work in pairs or small groups to evaluate energy use in their school and make recommendations for improved efficiency. Students create and use an energy audit tool to collect data and present recommendations to their class. Further communication at the school and district level is encouraged.
Students extend their knowledge of the skeletal system to biomedical engineering design, …
Students extend their knowledge of the skeletal system to biomedical engineering design, specifically the concept of artificial limbs. Students relate the skeleton as a structural system, focusing on the leg as structural necessity. They learn about the design considerations involved in the creation of artificial limbs, including materials and sensors.
Student teams are challenged to navigate a table tennis ball through a …
Student teams are challenged to navigate a table tennis ball through a timed obstacle course using only the provided unconventional “tools.” Teams act as engineers by working through the steps of the engineering design process to complete the overall task with each group member responsible to accomplish one of the obstacle course challenges. Inspired by the engineers who helped the Apollo 13 astronauts through critical problems in space, students must be innovative with the provided supplies to use them as tools to move the ball through the obstacles as swiftly as possible. Groups are encouraged to communicate with each other to share vital information. The course and tool choices are easily customizable for varied age groups and/or difficulty levels. Pre/post assessment handouts, competition rules and judging rubric are provided.
This lesson presents characteristics of spacecraft models on mars to see how …
This lesson presents characteristics of spacecraft models on mars to see how well they meet design requirements and then presents a design challenge for students.
In this unit, students explore the various roles of environmental engineers, including: …
In this unit, students explore the various roles of environmental engineers, including: environmental cleanup, water quality, groundwater resources, surface water and groundwater flow, water contamination, waste disposal and air pollution. Specifically, students learn about the factors that affect water quality and the conditions that enable different animals and plants to survive in their environments. Next, students learn about groundwater and how environmental engineers study groundwater to predict the distribution of surface pollution. Students also learn how water flows through the ground, what an aquifer is and what soil properties are used to predict groundwater flow. Additionally, students discover that the water they drink everyday comes from many different sources, including surface water and groundwater. They investigate possible scenarios of drinking water contamination and how contaminants can negatively affect the organisms that come in contact with them. Students learn about the three most common methods of waste disposal and how environmental engineers continue to develop technologies to dispose of trash. Lastly, students learn what causes air pollution and how to investigate the different pollutants that exist, such as toxic gases and particulate matter. Also, they investigate the technologies developed by engineers to reduce air pollution.
Students are introduced to the fundamentals of environmental engineering as well as …
Students are introduced to the fundamentals of environmental engineering as well as the global air, land and water quality concerns facing today's environmental engineers. After a lesson and activity to introduce environmental engineering, students learn more about water chemistry aspects of environmental engineering. Specifically, they focus on groundwater contamination and remediation, including sources of contamination, adverse health effects of contaminated drinking water, and current and new remediation techniques. Several lab activities provide hands-on experiences with topics relevant to environmental engineering concerns and technologies, including removal efficiencies of activated carbon in water filtration, measuring pH, chromatography as a physical separation method, density and miscibility.
Explore the concept of evaporative cooling through a hands-on experiment. Use a …
Explore the concept of evaporative cooling through a hands-on experiment. Use a wet cloth and fan to model an air-conditioner and use temperature and relative humidity sensors to collect data. Then digitally plot the data using graphs in the activity. In an optional extension, make your own modifications to improve the cooler's efficiency.
In Unit 2 of the Explore the Salish Sea curriculum, students will …
In Unit 2 of the Explore the Salish Sea curriculum, students will review the water cycle, learn the parts of a watershed, and the effects of erosion and pollution, then learn ways of purifying these waters before they enter our streams and estuaries to safeguard these ecosystems for marine life and us. Each unit in this series contains a detailed unit plan, a slideshow, student journal, and assessments. All elements are adaptable and can be tailored to your local community.
The moon is more explored than the ocean, and that includes the …
The moon is more explored than the ocean, and that includes the Salish Sea. Where it is inconvenient or even impossible for people to go, we can engineer technology to go there for us, like the Mars Rovers, space probes, automatic unmanned vehicles, drones, and in this unit, remotely operated vehicles (ROV’s). Ocean Tech revisits the engineering process, but this time it requires physical, mechanical, and electrical engineers working together as a team to achieve a student-driven mission.
Chapter 5, Life in the Deep: The Subtidal World, is our first look into the amazing life forms that live their whole lives underwater. Is there access to the subtidal world near your school? If you can get to one (even if it is a pond or a pool), your students’ engineering efforts will find their reward. What mystery or problem will your students explore with their own ROV? Dive in!
Students use the engineering design process to solve a real-world problem shoe …
Students use the engineering design process to solve a real-world problem shoe engineering! Working in small teams, they design, build and test a pair of wearable platform or high-heeled shoes, taking into consideration the stress and strain forces that it will encounter from the shoe wearer. They conclude the activity with a "walk-off" to test the shoe designs and discuss the design process.
This lesson focuses on how food packages are designed and made. Students …
This lesson focuses on how food packages are designed and made. Students will learn three of the main functions of a food package. They will learn what is necessary of the design and materials of a package to keep food clean, protect or aid in the physical and chemical changes that can take place in a food, and identify a food appealingly. Then, in the associated activity, the students will have the opportunity to become packaging engineers by designing and building their own food package for a particular type of food.
To understand how fossils are formed, students model the process of fossilization …
To understand how fossils are formed, students model the process of fossilization by making fossils using small toy figures and melted chocolate. They extend their knowledge to the many ways that engineers aid in the study of fossils, including the development of tools and technologies for determining the physical and chemical properties of fossilized organisms, and how those properties tell a story of our changing world.
In this activity, students will use a tutorial on the U.S. Environmental …
In this activity, students will use a tutorial on the U.S. Environmental Protection Agency's website to learn about how surface water is treated to make it safe to drink.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.