Study the motion of a toy car on a ramp and use motion sensors to digitally graph the position data and then analyze it. Make predictions about what the graphs will look like, and consider what the corresponding velocity graphs would look like.
In this lab students will investigate Newton's first law of motion or …
In this lab students will investigate Newton's first law of motion or the Law of Inertia. The first lab investigates an object at rest, and the effects of friction on motion. The second lab investigates an object in motion. Students will experiment with this law by varying their speed, while trying to drop a tennis ball in a given target zone. Although intended for seventh grade students this lab can be adjusted to fit the educational needs of each student. Definitions adapted from cK-12 Newton's First Law of Motion
In this activity, students will learn about Newton's 2nd Law of Motion. …
In this activity, students will learn about Newton's 2nd Law of Motion. They will learn that the force required to move a book is proportional to the weight of the book. Engineers use this relationship to determine how much force they need to move an airplane.
Playground Physics is an iPad and Progressive Web application (app) developed by …
Playground Physics is an iPad and Progressive Web application (app) developed by the New York Hall of Science. The app is accompanied by a supplemental Teacher Guide for middle school teachers. The Playground Physics curriculum is a six-week supplemental physics curriculum, designed to be used alongside any existing science curricula in the middle grades. It includes a teacher guide and student work, and maps to the NGSS and NYSSLS. The curriculum is focused around three different units which each explore a major concept in physics (motion, force and energy) through a specific type of physical play (catching a ball, jumping, swinging).
Playground Physics is particularly well suited to supporting diverse learners because it leverages students’ abilities to playfully ask and answer their own questions to connect academic content to what they notice, describe and analyze about their own individual actions. Additionally, the multimodal nature of the program, which uses videos and images as well as kinesthetic exploration to build understanding, is less text-dependent than more traditional physics instructional materials.
Working in teams, students learn the basics of fluid power design using …
Working in teams, students learn the basics of fluid power design using the PFPD as their investigative platform. They investigate the similarities and differences between using pneumatic and hydraulic power in the PFPD. With the main components of the PFPD already assembled, student groups determine the correct way to connect the valves to the actuators using colored, plastic tubing. Once connected, they compete in timed challenges to test their abilities to separate material out of containers using the PFPDs. NOTE: No special pre-requisite knowledge is required for students to be successful in this activity.
Students watch video clips from October Sky and Harry Potter and the …
Students watch video clips from October Sky and Harry Potter and the Sorcerer's Stone to learn about projectile motion. They explore the relationships between displacement, velocity and acceleration and calculate simple projectile motion. The objective of this activity is to articulate concepts related to force and motion through direct immersive interaction based on the theme, The Science Behind Harry Potter. Students' interest is piqued by the use of popular culture in the classroom.
Building upon their understanding of forces and Newton's laws of motion, students …
Building upon their understanding of forces and Newton's laws of motion, students learn about the force of friction, specifically with respect to cars. They explore the friction between tires and the road to learn how it affects the movement of cars while driving. In an associated literacy activity, students explore the theme of conflict in literature, and the difference between internal and external conflict, and various types of conflicts. Stories are used to discuss methods of managing and resolving conflict and interpersonal friction.
Students write a biographical sketch of an artist or athlete who lives …
Students write a biographical sketch of an artist or athlete who lives on the edge, riding the gravity wave, to better understand how these artists and athletes work with gravity and manage risk. Note: The literacy activities for the Mechanics unit are based on physical themes that have broad application to our experience in the world concepts of rhythm, balance, spin, gravity, levity, inertia, momentum, friction, stress and tension.
Students learn the concept of angular momentum and its correlation to mass, …
Students learn the concept of angular momentum and its correlation to mass, velocity and radius. They experiment with rotation and an object's mass distribution. In an associated literacy activity, students use basic methods of comparative mythology to consider why spinning and weaving are common motifs in creation myths and folktales.
The concepts of stability and equilibrium are introduced while students learn how …
The concepts of stability and equilibrium are introduced while students learn how these ideas are related to the concept of center of mass. They gain further understanding when they see, first-hand, how equilibrium is closely related to an object's center of mass. In an associated literacy activity, students learn about motion capture technology, the importance of center of gravity in animation and how use the concept of center of gravity in writing an action scene.
Join us on STEM in 30 from the NASCAR Hall of Fame …
Join us on STEM in 30 from the NASCAR Hall of Fame in Charlotte, North Carolina and look at the crossover between space, air and car forces and technologies.
Through a five-lesson series with five activities, students are introduced to six …
Through a five-lesson series with five activities, students are introduced to six simple machines inclined plane, wedge, screw, lever, pulley, wheel-and-axle as well as compound machines, which are combinations of two or more simple machines. Once students understand about work (work = force x distance), they become familiar with the machines' mechanical advantages, and see how they make work easier. Through an introduction to compound machines, students begin to think critically about machine inventions and their pervasive roles in our lives. After learning about Rube Goldberg contraptions absurd inventions that complete simple tasks in complicated ways they evaluate the importance and usefulness of the many machines around them. Through the hands-on activities, students draw designs for contraptions that could move a circus elephant into a rail car, create a construction site ramp design by measuring different inclined planes and calculating the ideal vs. actual mechanical advantage of each, compare the theoretical and actual mechanical advantages of different pulley systems conceived to save a whale, build and test grape catapults made with popsicle sticks and rubber bands, and follow the steps of the engineering design process to design and build Rube Goldberg machines.
Students learn about two types of friction static and kinetic and the …
Students learn about two types of friction static and kinetic and the equation that governs them. They also measure the coefficient of static friction experimentally.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.