In this design activity, students investigate materials engineering as it applies to …
In this design activity, students investigate materials engineering as it applies to weather and clothing. Teams design and analyze different combinations of materials for effectiveness in specific weather conditions. Analysis includes simulation of temperature, wind and wetness elements, as well as the functionality and durability of final prototypes.
Student teams commit to a final decision on the location they recommend …
Student teams commit to a final decision on the location they recommend for safe underground cavern shelter for the citizens of Alabraska. They prepare and deliver final presentations to defend their final decisions to the class.
A process for technical problem solving is introduced and applied to a …
A process for technical problem solving is introduced and applied to a fun demonstration. Given the success with the demo, the iterative nature of the process can be illustrated.
During this lesson, students will learn about emergency preparedness during World War …
During this lesson, students will learn about emergency preparedness during World War I and the Apollo mission, equipping them to participate in a challenge to design their own kit.
Students learn to apply the principles and concepts associated with energy and …
Students learn to apply the principles and concepts associated with energy and the transfer of energy in an engineering context by designing and making musical instruments. They choose from a variety of provided supplies to make instruments capable of producing three different tones. After completing their designs, students explain the energy transfer mechanism in detail and describe how they could make their instruments better.
We all know that it takes energy to provide us with the …
We all know that it takes energy to provide us with the basics of shelter: heating, cooling, lighting, electricity, sanitation and cooking. To create energy-efficient housing that is practical for people to use every day requires combining many smaller systems that each perform a function well, and making smart decisions about the sources of power we use. Through five lessons on the topics of heat transfer, circuits, daylighting, electricity from renewable energy sources, and passive solar design, students learn about the science, math and engineering that go into designing energy-efficient components of smart housing that is environmentally friendly. Through numerous design/build/analyze activities, students create a solar water heater, swamp cooler, thermostat, model houses for testing, model greenhouse, and wind and water turbine prototypes. It is best if students are concurrently taking Algebra 1 in order to complete some of the worksheets.
Fact sheets are provided for several different energy resources as a starting …
Fact sheets are provided for several different energy resources as a starting point for students to conduct literature research on the way these systems work and their various pros and cons. Students complete a worksheet for homework or take in-class time for research and presentation of their findings to the class. This approach requires students to learn for themselves and teach each other, rather than having the teacher lecture about the subject matter.
Students learn about the engineering design process and how it is used …
Students learn about the engineering design process and how it is used to engineer products for everyday use. Students individually brainstorm solutions for sorting coins and draw at least two design ideas. They work in small groups to combine ideas and build a coin sorter using common construction materials such as cardboard, tape, straws and fabric. Students test their coin sorters, make revisions and suggest ways to improve their designs. By designing, building, testing and improving coin sorters, students come to understand how the engineering design process is used to engineer products that benefit society.
Student teams are challenged to navigate a table tennis ball through a …
Student teams are challenged to navigate a table tennis ball through a timed obstacle course using only the provided unconventional “tools.” Teams act as engineers by working through the steps of the engineering design process to complete the overall task with each group member responsible to accomplish one of the obstacle course challenges. Inspired by the engineers who helped the Apollo 13 astronauts through critical problems in space, students must be innovative with the provided supplies to use them as tools to move the ball through the obstacles as swiftly as possible. Groups are encouraged to communicate with each other to share vital information. The course and tool choices are easily customizable for varied age groups and/or difficulty levels. Pre/post assessment handouts, competition rules and judging rubric are provided.
In this activity, students will learn about and apply the engineering design …
In this activity, students will learn about and apply the engineering design process to solve a problem. The activity frames the problem around designing, building and testing a paper bridge that maximizes the weight it holds.
Resources included in this lesson are found at the bottom of this document and include: - Teacher guide - Engineering Notebook Document - Design Process Presentation - Design Process Note Sheets - Links to videos - Pre/Post Assessment
In this activity, students will learn about and apply the Engineering Design …
In this activity, students will learn about and apply the Engineering Design Process to solve a problem. While working through the steps of the Engineering Design process they will focus on defining the criteria and constraints of a design problem, learn about scientific principles of simple machines, understand tool and machine safety, and create a prototype solution to the problem. The activity frames the problem around researching, designing, building and testing a prototype that is built with at least one simple machine that will launch a ball into a target. At end of unit students test their prototypes and present their findings of working through the process.
In this activity, students will learn about and apply the Engineering Design …
In this activity, students will learn about and apply the Engineering Design Process to solve a problem. While working through the steps of the Engineering Design process they will focus on defining the criteria and constraints of a design problem, learn about scientific principles of simple machines, understand tool and machine safety, and create a prototype solution to the problem. The activity frames the problem around researching, designing, building and testing a prototype that is built with at least one simple machine that will launch a ball into a target. At end of unit students test their prototypes and present their findings of working through the process.
In this activity, students will learn about and apply the Engineering Design …
In this activity, students will learn about and apply the Engineering Design Process to solve a problem. While working through the steps of the Engineering Design process they will focus on defining the criteria and constraints of a design problem, learn about scientific principles of simple machines, understand tool and machine safety, and create a prototype solution to the problem. The activity frames the problem around researching, designing, building and testing a prototype that is built with at least one simple machine that will launch a ball into a target. At end of unit students test their prototypes and present their findings of working through the process.
Students build small-sized prototypes of mountain rescue litters rescue baskets for use …
Students build small-sized prototypes of mountain rescue litters rescue baskets for use in hard-to-get-to places, such as mountainous terrain to evacuate an injured person (modeled by a potato) from the backcountry. Groups design their litters within constraints: they must be stable, lightweight, low-cost, portable and quick to assemble. Students demonstrate their designs in a timed test during which they assemble the litter and transport the rescued person (potato) over a set distance.
Students follow the steps of the engineering design process (EDP) while learning …
Students follow the steps of the engineering design process (EDP) while learning about assistive devices and biomedical engineering. They first go through a design-build-test activity to learn the steps of the cyclical engineering design process. Then, during the three main activities (7 x 55 minutes each) student teams are given a fictional client statement and follow the EDP steps to design products an off-road wheelchair, a portable wheelchair ramp, and an automatic floor sweeper computer program. Students brainstorm ideas, identify suitable materials and demonstrate different methods of representing solutions to their design problems scale drawings or programming descriptions, and simple models or classroom prototypes.
Students learn how healthy human heart valves function and the different diseases …
Students learn how healthy human heart valves function and the different diseases that can affect heart valves. They also learn about devices and procedures that biomedical engineers have designed to help people with damaged or diseased heart valves. Students learn about the pros and cons of different materials and how doctors choose which engineered artificial heart valves are appropriate for certain people.
Students learn about the wonderful and fascinating country of China, and its …
Students learn about the wonderful and fascinating country of China, and its environmental challenges that require engineering solutions, many in the form of increased energy efficiency, the incorporation of renewable energy, and new engineering developments for urban and rural areas. China is fast becoming an extremely influential factor in our world today, and will likely have a large role in shaping the decades ahead. China is the world's largest energy consumer and the largest producer of carbon dioxide emissions, leading engineers and scientists to be concerned about the role these emissions play in rural and urban public and environmental health, as well as in global climate change. Through exploring some sources of air pollution, appropriate housing for different climate zones, and the types of renewable energy, the lessons and activities of this unit present ways that engineers are helping people in China, using an approach to cleaner, smarter, healthier and more-efficient ways of living that apply to people wherever they live.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.