In this curriculum module, students in high school life science, marine science, …
In this curriculum module, students in high school life science, marine science, and/or chemistry courses act as interdisciplinary scientists and delegates to investigate how the changing carbon cycle will affect the oceans along with their integral populations.
The oceans cover 70 percent of the planet and play a critical role in regulating atmospheric carbon dioxide through the interaction of physical, chemical, and biological processes. As a result of anthropogenic activity, a doubling of the atmospheric CO2 concentration (to 760 ppm) is expected to occur by the end of this century. A quarter of the total CO2 emitted has already been absorbed by the surface oceans, changing the marine carbonate system, resulting in a decrease in pH, a change in carbonate-ion concentrations, and a change in the speciation of macro and micronutrients. The shift in the carbonate system is already drastically affecting biological processes in the oceans and is predicted to have major consequences on carbon export to the deep ocean with reverberating effects on atmospheric CO2. Put in simple terms, ocean acidification is a complex phenomenon with complex consequences. Understanding complexity and the impact of ocean acidification requires systems thinking – both in research and in education. Scientific advancement will help us better understand the problem and devise more effective solutions, but executing these solutions will require widespread public participation to mitigate this global problem.
Through these lessons, students closely model what is occurring in laboratories worldwide and at Institute for Systems Biology (ISB) through Monica Orellana’s research to analyze the effect CO2 has on ocean chemistry, ecosystems and human societies. Students experiment, analyze public data, and prepare for a mock summit to address concerns. Student groups represent key “interest groups” and design two experiments to observe the effects of CO2 on seawater pH, diatom growth, algal blooms, nutrient availability, and/or shell dissolution.
In this unit, students will explore how global climate change impacts marine …
In this unit, students will explore how global climate change impacts marine ecosystems (especially kelp forests and coral reefs) and the survival and migration patterns of species within marine ecosystems. Students will examine how marine resources and fisheries upon which humans depend (especially marginalized and vulnerable human populations) are being affected by ocean warming and what we can learn from Indigenous peoples on how to mitigate the effects of ocean warming. Lastly, students will learn about innovative solutions to addressing the impacts of ocean warming and propose their own solution to the problem.
This narrated slide show gives a brief overview of coral biology and …
This narrated slide show gives a brief overview of coral biology and how coral reefs are in danger from pollution, ocean temperature change, ocean acidification, and climate change. In addition, scientists discuss how taking cores from corals yields information on past changes in ocean temperature.
This 3-part interactive and virtual lab activity examines the life cycle of …
This 3-part interactive and virtual lab activity examines the life cycle of the sea urchin, and how the increasing acidity of the ocean affects their larval development.
Take a breath — where does the oxygen you inhaled come from? …
Take a breath — where does the oxygen you inhaled come from? In our changing world, will we always have enough oxygen? What is in water that supports life? What is known? How do we know what we know about our vast oceans? These are just a few of the driving questions explored in this interactive STEAM high school curriculum module.
Students in marine science, environmental science, physics, chemistry, biology, integrated science, biotechnology and/or STEAM courses can use this curriculum module in order to use real-world, big data to investigate how our “invisible forest” influences ocean and Earth systems. Students build an art project to represent their new understanding and share this with the broader community.
This 4-week set of lessons is based on the oceanographic research of Dr. Anne Thompson of Portland State University in Oregon, which focuses on the abundant ocean phytoplankton Prochlorococcus. These interdisciplinary STEAM lessons were inspired by Dr. Thompson’s lab and fieldwork as well as many beautiful visualizations of Prochlorococcus, the ocean, and Earth. Students learn about the impact and importance of Prochlorococcus as the smallest and most abundant photosynthetic organism on our planet. Through the lessons, students act as both scientists and artists as they explore where breathable oxygen comes from and consider how to communicate the importance of tiny cells to human survival.
This module is written as a phenomenon-based, Next Generation Science Standards (NGSS) three-dimensional learning unit. Each of the lessons below also has an integrated, optional Project-Based Learning component that guides students as they complete the PBL process. Students learn to model a system and also design and evaluate questions to investigate phenomena. Students ultimately learn what is in a drop of ocean water and showcase how their drop contributes to our health and the stability and dynamics of global systems.
This is the ninth and final lesson in a series of lessons …
This is the ninth and final lesson in a series of lessons about climate change. This lesson focuses on the various activities that humans can do to mitigate the effects of climate change. This includes information on current and predicted CO2 emission scenarios across the globe, alternative energy sources, and how people are currently responding to climate change. Importantly, this lesson is motivating in showing students that they can make a difference.
In this unit, students will explore the causes of sea level rise …
In this unit, students will explore the causes of sea level rise and will examine short and long-term trends using sea level rise data. In addition, they will learn about the impacts to low-lying coastal communities and they will explore mitigation strategies. Finally, students will deepen their understanding of sea level rise by writing arguments focused on impacted communities and possible solutions.
In this activity, students engage in a simulation of the international negotiation …
In this activity, students engage in a simulation of the international negotiation process in order to convey how the international community is responding to climate change. Participants learn firsthand about the interests of different countries and the range of policy responses to mitigate future climate change.
This is a multi-step, interactive tool for users to identify potential risks …
This is a multi-step, interactive tool for users to identify potential risks (to people, buildings, infrastructure, contamination, land) for selected coastal areas in the US, using scenarios of water level rising (as a result of tides, sea level rise, and storm surge) from 0-10 feet. Tool provides local, regional and national resources as guidance for managing risk.
In this activity, students review techniques used by scientists as they analyze …
In this activity, students review techniques used by scientists as they analyze a 50-year temperature time series dataset. The exercise helps students understand that data typically has considerable variability from year to year and to predict trends, one needs to consider long-term data.
In this intermediate Excel activity, students import US Historical Climate Network mean …
In this intermediate Excel activity, students import US Historical Climate Network mean temperature data into Excel from a station of their choice. They are then guided through the activity on how to use Excel for statistical calculations, graphing, and linear trend estimates. The activity assumes some familiarity with Excel and graphing in Excel.
In this activity students download satellite images displaying land surface temperature, snow …
In this activity students download satellite images displaying land surface temperature, snow cover, and reflected short wave radiation data from the NASA Earth Observation (NEO) Web site. They then explore and animate these images using the free tool ImageJ and utilize the Web-based analysis tools built into NEO to observe, graph, and analyze the relationships among these three variables.
Students explore the increase in atmospheric carbon dioxide over the past 40 …
Students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.
This is a teaching activity in which students learn about the connection …
This is a teaching activity in which students learn about the connection between CO2 emissions, CO2 concentration, and average global temperatures. Through a simple online model, students learn about the relationship between these and learn about climate modeling while predicting temperature change over the 21st century.
This activity with a lab report instructs students to solve and plot …
This activity with a lab report instructs students to solve and plot 160,000 years' worth of ice core data from the Vostok ice core using Excel or similar spreadsheets to analyze data. Students learn about ice cores and what they can tell us about past atmospheric conditions and the past atmospheric concentrations of CO2 and CH4.
This is a series of 5 guided-inquiry activities that examine data and …
This is a series of 5 guided-inquiry activities that examine data and models that climate scientists use to attempt to answer the question of Earth's future climate.
In this activity students work with real datasets to investigate a real …
In this activity students work with real datasets to investigate a real situation regarding disappearing Arctic sea ice. The case study has students working side-by-side with a scientist from the National Snow and Ice Data Center and an Inuit community in Manitoba.
This highly engaging course is comprised of five modules. Each one clearly …
This highly engaging course is comprised of five modules. Each one clearly explains the concept using readings and videos. Students are presented with the current fire and climate data and then run simulations. Students read graphs based on the data they collect in their simulations and then answer comprehension questions and make predictions.
This simulation provides scenarios for exploring the principles of climate dynamics from …
This simulation provides scenarios for exploring the principles of climate dynamics from a multi-disciplinary perspective. Interconnections among climate issues, public stakeholders, and the governance spheres are investigated through creative simulations designed to help students understand international climate change negotiations.
(Copyrighted by Climate Interactive, creators of the Climate Scoreboard, C-ROADS, Climate Bathtub and other interactive tools to enable thinking in systems)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.