Learn about conservation of energy with a skater dude! Build tracks, ramps …
Learn about conservation of energy with a skater dude! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!
Learn about conservation of energy with a skater dude! Build tracks, ramps …
Learn about conservation of energy with a skater dude! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!
Students will: Predict the kinetic and potential energy of objects Design a …
Students will: Predict the kinetic and potential energy of objects Design a skate park Examine how kinetic and potential energy interact with each other
Under the "The Science Behind Harry Potter" theme, a succession of diverse …
Under the "The Science Behind Harry Potter" theme, a succession of diverse complex scientific topics are presented to students through direct immersive interaction. Student interest is piqued by the incorporation of popular culture into the classroom via a series of interactive, hands-on Harry Potter/movie-themed lessons and activities. They learn about the basics of acid/base chemistry (invisible ink), genetics and trait prediction (parseltongue trait in families), and force and projectile motion (motion of the thrown remembrall). In each lesson and activity, students are also made aware of the engineering connections to these fields of scientific study.
Students are introduced to the definition of energy and the concepts of …
Students are introduced to the definition of energy and the concepts of kinetic energy, potential energy, and energy transfer. This lesson is a broad overview of concepts that are taught in more detail in subsequent lessons and activities in this curricular unit. A PowerPoint(TM) presentation and pre/post quizzes are provided.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"What makes rocket engines tough enough to withstand the incredibly high temperatures needed to escape Earth’s atmosphere? A closer look reveals part of the answer. Like tiny brick walls, the boundaries between these microscopic grains help stop the motion of defects that could lead to cracking. Keeping grains small, therefore, helps keep materials like this alloy strong and intact. But under certain conditions, some grains can start to grow--and fast--putting an otherwise durable material, and all it protects, at risk of serious damage. While researchers have generally attributed rapid grain growth to a single, common mechanism, a team from Sandia National Laboratories suggests that not all fast-moving grains are created equally. That insight might force scientists and engineers to rethink how to make metals stronger—and safer. Abnormally fast-growing grains are an important topic in materials research because of the risk they pose to the structural integrity of metal parts..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
Explore pressure in the atmosphere and underwater. Reshape a pipe to see …
Explore pressure in the atmosphere and underwater. Reshape a pipe to see how it changes fluid flow speed. Experiment with a leaky water tower to see how the height and water level determine the water trajectory.
During the associated lesson, students have learned about Newton's three laws of …
During the associated lesson, students have learned about Newton's three laws of motion and free-body diagrams and have identified the forces of thrust, drag and gravity. As students begin to understand the physics behind thrust, drag and gravity and how these relate these to Newton's three laws of motion, groups assemble and launch the rockets that they designed in the associated lesson. The height of the rockets, after constructed and launched, are measured and compared to the theoretical values calculated during the rocket lesson. Effective teamwork and attention to detail is key for successful launches.
Students will be designing and performing an experiment using the scientific method …
Students will be designing and performing an experiment using the scientific method to answer the following question: How can I make a toy car move? Using simple materials, students will explore how a force is a push or a pull.
The egg-drop activity is designed to help students develop a deeper understanding …
The egg-drop activity is designed to help students develop a deeper understanding of the force created by wind resistance and how it interacts with the force due to Gravity. Students will note how surface area affects the resistance of a falling object as Gravity works on it. Students will record and share observations and questions regarding the experiment.
Explore the forces at work when you try to push a filing …
Explore the forces at work when you try to push a filing cabinet. Create an applied force and see the resulting friction force and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. View a Free Body Diagram of all the forces (including gravitational and normal forces).
Explore the forces at work when you try to push a filing …
Explore the forces at work when you try to push a filing cabinet. Create an applied force and see the resulting friction force and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. View a Free Body Diagram of all the forces (including gravitational and normal forces).
Explore the forces at work in a tug of war or pushing …
Explore the forces at work in a tug of war or pushing a refrigerator, crate, or person. Create an applied force and see how it makes objects move. Change friction and see how it affects the motion of objects.
Explore the forces at work when you try to push a filing …
Explore the forces at work when you try to push a filing cabinet. Create an applied force and see the resulting friction force and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. View a Free Body Diagram of all the forces (including gravitational and normal forces).
Students take a closer look at cars and learn about some characteristics …
Students take a closer look at cars and learn about some characteristics that affect their energy efficiency, including rolling resistance and the aerodynamics of shape and size. They come to see how vehicles are one example of a product in which engineers are making changes and improvements to gain greater efficiency and thus require less energy to operate.
Learn how friction causes a material to heat up and melt. Rub …
Learn how friction causes a material to heat up and melt. Rub two objects together and they heat up. When one reaches the melting temperature, particles break free as the material melts away.
Learn how friction causes a material to heat up and melt. Rub …
Learn how friction causes a material to heat up and melt. Rub two objects together and they heat up. When one reaches the melting temperature, particles break free as the material melts away. Arabic Language.
Students use LEGO® MINDSTORMS® robotics to help conceptualize and understand the force …
Students use LEGO® MINDSTORMS® robotics to help conceptualize and understand the force of friction. Specifically, they observe how different surfaces in contact result in different frictional forces. A LEGO robot is constructed to pull a two-wheeled trailer made of LEGO parts. The robot is programmed to pull the trailer 10 feet and trial runs are conducted on smooth and textured surfaces. The speed and motor power of the robot is kept constant in all trials so students observe the effect of friction between various combinations of surfaces and trailer wheels. To apply what they learn, students act as engineers and create the most effective car by designing the most optimal tires for given surface conditions.
This lesson looks at the impact friction has on motion by running …
This lesson looks at the impact friction has on motion by running toy cars on different surfaces. Students will measure the distance the toy car travels down a ramp and see how adding sandpaper as a source of friction impacts distance.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.