Students learn how the force of water helps determine the size and …
Students learn how the force of water helps determine the size and shape of dams. They use clay to build models of four types of dams, and observe the force of the water against each type. They conclude by deciding which type of dam they, as Splash Engineering engineers, will design for Thirsty County.
Students learn about nanocomposites, compression and strain as they design and program …
Students learn about nanocomposites, compression and strain as they design and program robots that compress materials. Student groups conduct experiments to determine how many LEGO MINDSTORMS(TM) NXT motor rotations it takes to compress soft nanocomposites, including mini marshmallows, Play-Doh®, bread and foam. They measure the length and width of their nanocomposite objects before and after compression to determine the change in length and width as a function of motor rotation.
Students learn about the types of possible loads, how to calculate ultimate …
Students learn about the types of possible loads, how to calculate ultimate load combinations, and investigate the different sizes for the beams (girders) and columns (piers) of simple bridge design. Students learn the steps that engineers use to design bridges: understanding the problem, determining the potential bridge loads, calculating the highest possible load, and calculating the amount of material needed to resist the loads.
In this activity, students will learn about and apply the Laws of …
In this activity, students will learn about and apply the Laws of Physics to successfully launch and land a raw egg. The activity frames the problem around designing and building a bottle rocket that will protect a raw egg being launched into the air at least seven meters. Resources included in this lesson are found at the bottom of this document and include:
-Teacher guide -Physics note sheets on motion, speed, velocity, acceleration, momentum, force, friction, Newton’s Laws of Motion, potential and kinetic energy and gravity. -Egg Launch Instructions -Link to Bottle Rocket Launching Instructions -Links to videos -Post Assessment
In this activity, students will learn about and apply the Laws of …
In this activity, students will learn about and apply the Laws of Physics to successfully launch and land a raw egg. The activity frames the problem around designing and building a bottle rocket that will protect a raw egg being launched into the air at least seven meters. Resources included in this lesson are found at the bottom of this document and include:
-Teacher guide -Physics note sheets on motion, speed, velocity, acceleration, momentum, force, friction, Newton’s Laws of Motion, potential and kinetic energy and gravity. -Egg Launch Instructions -Link to Bottle Rocket Launching Instructions -Links to videos -Post Assessment
In this activity, students will learn about and apply the Laws of …
In this activity, students will learn about and apply the Laws of Physics to successfully launch and land a raw egg. The activity frames the problem around designing and building a bottle rocket that will protect a raw egg being launched into the air at least seven meters. Resources included in this lesson are found at the bottom of this document and include:
-Teacher guide -Physics note sheets on motion, speed, velocity, acceleration, momentum, force, friction, Newton’s Laws of Motion, potential and kinetic energy and gravity. -Egg Launch Instructions -Link to Bottle Rocket Launching Instructions -Links to videos -Post Assessment
Demos and activities in this lesson are intended to illustrate the basic …
Demos and activities in this lesson are intended to illustrate the basic concepts of energy science -- work, force, energy, power etc. and the relationships among them. The "lecture" portion of the lesson includes many demonstrations to keep students engaged, yet has high expectations for the students to perform energy related calculations and convert units as required. A homework assignment and quiz are used to reinforce and assess these basic engineering science concepts.
In this introduction to light energy, students learn about reflection and refraction …
In this introduction to light energy, students learn about reflection and refraction as they learn that light travels in wave form. Through hands-on activities, they see how prisms, magnifying glasses and polarized lenses work. They also gain an understanding of the colors of the rainbow as the visible spectrum, each color corresponding to a different wavelength.
This lesson presents characteristics of spacecraft models on mars to see how …
This lesson presents characteristics of spacecraft models on mars to see how well they meet design requirements and then presents a design challenge for students.
Under the "The Science Behind Harry Potter" theme, a succession of diverse …
Under the "The Science Behind Harry Potter" theme, a succession of diverse complex scientific topics are presented to students through direct immersive interaction. Student interest is piqued by the incorporation of popular culture into the classroom via a series of interactive, hands-on Harry Potter/movie-themed lessons and activities. They learn about the basics of acid/base chemistry (invisible ink), genetics and trait prediction (parseltongue trait in families), and force and projectile motion (motion of the thrown remembrall). In each lesson and activity, students are also made aware of the engineering connections to these fields of scientific study.
Students learn about applied forces as they create pop-up-books the art of …
Students learn about applied forces as they create pop-up-books the art of paper engineering. They also learn the basic steps of the engineering design process.
Simple machines are devices with few or no moving parts that make …
Simple machines are devices with few or no moving parts that make work easier. Students are introduced to the six types of simple machines the wedge, wheel and axle, lever, inclined plane, screw, and pulley in the context of the construction of a pyramid, gaining high-level insights into tools that have been used since ancient times and are still in use today. In two hands-on activities, students begin their own pyramid design by performing materials calculations, and evaluating and selecting a construction site. The six simple machines are examined in more depth in subsequent lessons in this unit.
Simple machines are devices with few or no moving parts that make …
Simple machines are devices with few or no moving parts that make work easier, and which people have used to provide mechanical advantage for thousands of years. Students learn about the wedge, wheel and axle, lever, inclined plane, screw and pulley in the context of the construction of a pyramid, gaining insights into tools that have been used since ancient times and are still important today. Through numerous hands-on activities, students imagine themselves as ancient engineers building a pyramid. Student teams evaluate and select a construction site, design a pyramid, perform materials calculations, test a variety of cutting wedges on different materials, design a small-scale cart/lever transport system to convey building materials, experiment with the angle of inclination and pull force on an inclined plane, see how a pulley can change the direction of force, and learn the differences between fixed, movable and combined pulleys. While learning the steps of the engineering design process, students practice teamwork, creativity and problem solving.
Students observe multiple examples of capillary action. First they observe the shape …
Students observe multiple examples of capillary action. First they observe the shape of a glass-water meniscus and explain its shape in terms of the adhesive attraction of the water to the glass. Then they study capillary tubes and observe water climbing due to capillary action in the glass tubes. Finally, students experience a real-world application of capillary action by designing and using "capillary siphons" to filter water.
Students are introduced to the concept of energy conversion, and how energy …
Students are introduced to the concept of energy conversion, and how energy transfers from one form, place or object to another. They learn that energy transfers can take the form of force, electricity, light, heat and sound and are never without some energy "loss" during the process. Two real-world examples of engineered systems light bulbs and cars are examined in light of the law of conservation of energy to gain an understanding of their energy conversions and inefficiencies/losses. Students' eyes are opened to the examples of energy transfer going on around them every day. Includes two simple teacher demos using a tennis ball and ball bearings. A PowerPoint(TM) presentation and quizzes are provided.
Students are introduced to the definition of energy and the concepts of …
Students are introduced to the definition of energy and the concepts of kinetic energy, potential energy, and energy transfer. This lesson is a broad overview of concepts that are taught in more detail in subsequent lessons and activities in this curricular unit. A PowerPoint(TM) presentation and pre/post quizzes are provided.
This resource provides basic information on four types of friction - sliding, …
This resource provides basic information on four types of friction - sliding, static, rolling, and fluid. It is aimed primarily at an upper elementary or lower middle school curriculum.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.