Updating search results...

Search Resources

134 Results

View
Selected filters:
  • engineering-design
Easy-Fit Design
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video produced for Teachers' Domain, Chi-An Wang, a mechanical engineering graduate from the Massachusetts Institute of Technology, describes her process when working with New Balance to design a new triathlon shoe.

Subject:
Applied Science
Education
Engineering
Technology
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
Argosy Foundation
WGBH Educational Foundation
Date Added:
05/09/2006
Eduardo Torres-Jara
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video from Science City, meet Eduardo Torres-Jara, a postdoctoral associate in electrical engineering and computer science at the MIT Artificial Intelligence Lab. He describes his work on innovative robots that use tactile feedback to locate and grasp objects.

Subject:
Applied Science
Computer Science
Computing and Information
Engineering
Technology
Material Type:
Lecture
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
Partnership for a Nation of Learners
WGBH Educational Foundation
Date Added:
09/18/2007
Engineering Design Prototype - Simple Machines
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, students will learn about and apply the Engineering Design Process to solve a problem. While working through the steps of the Engineering Design process they will focus on defining the criteria and constraints of a design problem, learn about scientific principles of simple machines, understand tool and machine safety, and create a prototype solution to the problem. The activity frames the problem around researching, designing, building and testing a prototype that is built with at least one simple machine that will launch a ball into a target. At end of unit students test their prototypes and present their findings of working through the process.

● Project Rubric

Subject:
Applied Science
Career and Technical Education
Engineering
Material Type:
Activity/Lab
Assessment
Diagram/Illustration
Lecture Notes
Unit of Study
Date Added:
06/16/2021
Engineering Design Prototype - Simple Machines
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, students will learn about and apply the Engineering Design Process to solve a problem. While working through the steps of the Engineering Design process they will focus on defining the criteria and constraints of a design problem, learn about scientific principles of simple machines, understand tool and machine safety, and create a prototype solution to the problem. The activity frames the problem around researching, designing, building and testing a prototype that is built with at least one simple machine that will launch a ball into a target. At end of unit students test their prototypes and present their findings of working through the process.

● Project Rubric

Subject:
Applied Science
Career and Technical Education
Engineering
Material Type:
Activity/Lab
Assessment
Diagram/Illustration
Lecture Notes
Unit of Study
Date Added:
04/26/2021
Engineering Design Prototype - Simple Machines
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, students will learn about and apply the Engineering Design Process to solve a problem. While working through the steps of the Engineering Design process they will focus on defining the criteria and constraints of a design problem, learn about scientific principles of simple machines, understand tool and machine safety, and create a prototype solution to the problem. The activity frames the problem around researching, designing, building and testing a prototype that is built with at least one simple machine that will launch a ball into a target. At end of unit students test their prototypes and present their findings of working through the process.

● Project Rubric

Subject:
Applied Science
Career and Technical Education
Engineering
Material Type:
Activity/Lab
Assessment
Diagram/Illustration
Lecture Notes
Unit of Study
Date Added:
12/05/2018
Engineering Design and Rapid Prototyping
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides students with an opportunity to conceive, design and implement a product, using rapid prototyping methods and computer-aid tools. The first of two phases challenges each student team to meet a set of design requirements and constraints for a structural component. A course of iteration, fabrication, and validation completes this manual design cycle. During the second phase, each team conducts design optimization using structural analysis software, with their phase one prototype as a baseline.
Acknowledgements
This course is made possible thanks to a grant by the alumni sponsored Teaching and Education Enhancement Program (Class of ‘51 Fund for Excellence in Education, Class of ‘55 Fund for Excellence in Teaching, Class of ‘72 Fund for Educational Innovation). The instructors gratefully acknowledge the financial support.
The course was approved by the Undergraduate Committee of the MIT Department of Aeronautics and Astronautics in 2003. The instructors thank Prof. Manuel Martinez-Sanchez and the committee members for their support and suggestions.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Wallace, David
Young, Peter
de Weck, Olivier
Date Added:
01/01/2005
Engineering Design and Rapid Prototyping
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides students with an opportunity to conceive, design and implement a product, using rapid prototyping methods and computer-aid tools. The first of two phases challenges each student team to meet a set of design requirements and constraints for a structural component. A course of iteration, fabrication, and validation completes this manual design cycle. During the second phase, each team conducts design optimization using structural analysis software, with their phase one prototype as a baseline.
Acknowledgements
This course is made possible thanks to a grant by the alumni sponsored Teaching and Education Enhancement Program (Class of ‘51 Fund for Excellence in Education, Class of ‘55 Fund for Excellence in Teaching, Class of ‘72 Fund for Educational Innovation). The instructors gratefully acknowledge the financial support. The course was approved by the Undergraduate Committee of the MIT Department of Aeronautics and Astronautics in 2003. The instructors thank Prof. Manuel Martinez-Sanchez and the committee members for their support and suggestions.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
de Weck, Olivier
Date Added:
01/01/2007
Engineering Design for Circular Economy
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Products and equipment all around us are made of materials: look around you and you will see phones, computers, cars, and buildings. We face challenges in securing the supply of materials and the impact this has on the planet. Innovative product design can help us find solutions to these challenges. This course will explore new ways of designing products.

The design of products is an important aspect of a circular economy. The circular economy approach addresses material supply challenges by keeping materials in use much longer and eventually returning materials for new use. The principle is that waste must be minimized. Products will be designed to last longer. They will be easier to Reuse, Repair, and Remanufacture. The product will eventually be broken down and Recycled. This is Design for R and is the focus of this course.

Experts from leading European universities and research organizations will explain the latest strategies in product design. Current design approaches lead to waste, loss of value and loss of resources. You will learn about the innovative ways in which companies are creating value, whilst securing their supply chains, by integrating Design for R.

This course is suitable for all learners who have an interest in product design, innovative engineering, new business activity, entrepreneurship, sustainability, circular economy and everyone who thinks that the current way we do things today needs a radical rethink.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
David Peck
Dr. A. Lohrengel
Dr. E. van der Voet
Drs. Max Prumbohm
Date Added:
02/21/2019
Engineering Ethics
Read the Fine Print
Educational Use
Rating
0.0 stars

Students analyze an assortment of popular inventions to determine whom they are intended to benefit, who has access to them, who might be harmed by them, and who is profiting by them. Then they re-imagine the devices in a way that they believe would do more good for humanity. During the first 90-minute class period, they evaluate and discuss designs in small groups and as a class, examining their decision-making criteria. Collectively, they decide upon a definition of "ethical" that they use going forward. During the second period, students apply their new point-of-view to redesign popular inventions (on paper) and persuasively present them to the class, explaining how they meet the class standards for ethical designs. Two PowerPoint® presentations, a worksheet and grading rubric are provided.

Subject:
Career and Technical Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Mejia
Amy A. Wilson
Christina Sias
Date Added:
02/17/2017
Engineering Innovation and Design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Learn to produce great designs, be a more effective engineer, and communicate with high emotional and intellectual impact. This project based course gives students the ability to understand, contextualize, and analyze engineering designs and systems. By learning and applying design thinking, students will more effectively solve problems in any domain. Lectures focus on teaching a tested, iterative design process as well as techniques to sharpen creative analysis. Guest lectures from all disciplines illustrate different approaches to design thinking. This course develops students’ skills to conceive, organize, lead, implement, and evaluate successful projects in any engineering discipline. Additionally, students learn how to give compelling in-person presentations. Open to all majors, all years.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Kotelly, Blade
Schindall, Joel
Date Added:
09/01/2012
Engineering Mechanics I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This subject provides an introduction to the mechanics of materials and structures. You will be introduced to and become familiar with all relevant physical properties and fundamental laws governing the behavior of materials and structures and you will learn how to solve a variety of problems of interest to civil and environmental engineers. While there will be a chance for you to put your mathematical skills obtained in 18.01, 18.02, and eventually 18.03 to use in this subject, the emphasis is on the physical understanding of why a material or structure behaves the way it does in the engineering design of materials and structures.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Buehler, Markus
Ulm, Franz-Josef
Date Added:
09/01/2007
Engineering Polymers from Potatoes
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to polymer science and take on the role of chemical engineers to create and test a plastic made from starch. After testing their potato-based plastic, students design a product that takes advantage of the polymer’s unique properties. At the end of the engineering design process, students present their product in a development “pitch” that communicates their idea to potential investors.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Rebecca Hooper
Robin Lewis
Date Added:
02/12/2019
Engineering Pop-Ups
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about applied forces as they create pop-up-books the art of paper engineering. They also learn the basic steps of the engineering design process.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Engineering for the Red Planet
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment from NASA, robotics researcher Ayanna Howard uses engineering to improve the intelligence of robots in space exploration.

Subject:
Applied Science
Astronomy
Chemistry
Education
Engineering
Geoscience
Physical Science
Physics
Space Science
Technology
Material Type:
Diagram/Illustration
Lecture
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
Argosy Foundation
WGBH Educational Foundation
Date Added:
05/09/2006
Exploring Sea, Space, & Earth: Fundamentals of Engineering Design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Student teams formulate and complete space/earth/ocean exploration-based design projects with weekly milestones. This course introduces core engineering themes, principles, and modes of thinking, and includes exercises in written and oral communication and team building. Specialized learning modules enable teams to focus on the knowledge required to complete their projects, such as machine elements, electronics, design process, visualization and communication. Examples of projects include surveying a lake for millfoil from a remote controlled aircraft, then sending out robotic harvesters to clear the invasive growth; and exploration to search for the evidence of life on a moon of Jupiter, with scientists participating through teleoperation and supervisory control of robots.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Oceanography
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Techet, Alexandra
Date Added:
02/01/2009
Exploring Sea, Space, & Earth: Fundamentals of Engineering Design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Student teams formulate and complete space/earth/ocean exploration-based design projects with weekly milestones. This course introduces core engineering themes, principles, and modes of thinking, and includes exercises in written and oral communication and team building. Specialized learning modules enable teams to focus on the knowledge required to complete their projects, such as machine elements, electronics, design process, visualization and communication. Examples of projects include surveying a lake for millfoil from a remote controlled aircraft, then sending out robotic harvesters to clear the invasive growth; and exploration to search for the evidence of life on a moon of Jupiter, with scientists participating through teleoperation and supervisory control of robots.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Oceanography
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Techet, Alexandra
Date Added:
02/01/2009
Fire Safety in High Rises
Read the Fine Print
Educational Use
Rating
0.0 stars

This video segment adapted from NOVA explains how the sprinkler revolutionized fire safety and also features developments in fire-safety design for high-rise buildings.

Subject:
Applied Science
Engineering
Technology
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
Argosy Foundation
WGBH Educational Foundation
Date Added:
05/09/2006
Funny Boat
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment adapted from FETCH!, contestants are challenged to use materials from a garbage dump to build a boat that floats, can be steered, and is propelled by something other than oars.

Subject:
Applied Science
Chemistry
Education
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
Argosy Foundation
WGBH Educational Foundation
Date Added:
05/09/2006
Fusion: The Hydrogen Bomb
Read the Fine Print
Educational Use
Rating
0.0 stars

Just after World War II, nuclear scientists turned their attention from fission to fusion. This video segment adapted from AMERICAN EXPERIENCE looks at the beginnings of thermonuclear power generation.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
02/20/2004
Gimme Shelter: K-2 STEM@Home Project
Unrestricted Use
CC BY
Rating
0.0 stars

Join us as we create a shelter for our tiny imaginary pet! Students will investigate how different surfaces are heated differently by the sun and will design a shelter to help a critter stay cool and dry in the shade.

Subject:
Geology
Physical Science
Material Type:
Activity/Lab
Author:
Vickei Hrdina
Date Added:
05/11/2020