This course examines the issues, principles, and challenges toward building machines that …
This course examines the issues, principles, and challenges toward building machines that cooperate with humans and with other machines. Philosophical, scientific, and theoretical insights into this subject will be covered, as well as how these ideas are manifest in both natural and artificial systems (e.g. software agents and robots).
The goal of this course is to prepare you to engage in …
The goal of this course is to prepare you to engage in experimental investigations of questions related to linguistic theory, focusing on phonetics and phonology.
We will discuss numerous research problems that are related to the internet. …
We will discuss numerous research problems that are related to the internet. Sample topics include: routing algorithms such as BGP, communication protocols such as TCP, algorithms for intelligently selecting a resource in the face of uncertainty, bandwidth sensing tools, load balancing algorithms, streaming protocols, determining the structure of the internet, cost optimization, DNS-related problems, visualization, and large-scale data processing. The seminar is intended for students who are ready to work on challenging research problems. Each lecture will discuss:
methods used today issues and problems formulation of concrete problems potential new lines of research
A modest amount of background information will be provided so that the importance and context of the problems can be understood. No previous study of the internet is required, but experience with algorithms and/or theoretical computer science at the graduate/research level is needed.
Robots today move far too conservatively, using control systems that attempt to …
Robots today move far too conservatively, using control systems that attempt to maintain full control authority at all times. Humans and animals move much more aggressively by routinely executing motions which involve a loss of instantaneous control authority. Controlling nonlinear systems without complete control authority requires methods that can reason about and exploit the natural dynamics of our machines. This course introduces nonlinear dynamics and control of underactuated mechanical systems, with an emphasis on computational methods. Topics include the nonlinear dynamics of robotic manipulators, applied optimal and robust control and motion planning. Discussions include examples from biology and applications to legged locomotion, compliant manipulation, underwater robots, and flying machines.
Students are introduced to the concept of electricity by identifying it as …
Students are introduced to the concept of electricity by identifying it as an unseen, but pervasive and important presence in their lives. They are also introduced to the idea of engineers making, controlling and distributing electricity. The main concepts presented are the science of electricity and the careers that involve an understanding of electricity. Students first review the structure of atoms and then learn that electrons are the particles behind electrical current and the motivation for electron movement. They compare conductors and insulators based on their capabilities for electron flow. Then water and electrical systems are compared as an analogy to electrical current. They learn the differences between static and dynamic forms of electricity. A PowerPoint(TM) presentation is included, with review question/answer slides, as well as assessment handouts to practice using electricity-related terms through storytelling and to research electricity-related and electrical engineering careers.
Students use conductivity meters to measure various salt and water solutions, as …
Students use conductivity meters to measure various salt and water solutions, as indicated by the number of LEDs (light emitting diodes) that illuminate on the meter. Students create calibration curves using known amounts of table salt dissolved in water and their corresponding conductivity readings. Using their calibration curves, students estimate the total equivalent amount of salt contained in Gatorade (or other sports drinks and/or unknown salt solutions). This activity reinforces electrical engineering concepts, such as the relationship between electrical potential, current and resistance, as well as the typical circuitry components that represent these phenomena. The concept of conductors is extended to ions that are dissolved in solution to illustrate why electrolytic solutions support the passage of currents.
This site provides online simulations, learning modules, and interactive tools for learning …
This site provides online simulations, learning modules, and interactive tools for learning about nanotechnology -- the design and production of structures, devices, and systems one atom or one molecule at a time. Analyze the electronic properties of different nano materials and the optical properties of nanoparticles. Explore molecular conduction, nanofluids, and nanowires. Create simulations of nanoelectronic and nanoelectromechanical systems. Registration required.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.