This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, …
This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell’s equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy. Acknowledgments The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions.
In this electrochemistry activity, learners will explore two examples of electroplating. In …
In this electrochemistry activity, learners will explore two examples of electroplating. In Part 1, zinc from a galvanized nail (an iron nail which has been coated with zinc by dipping it in molten zinc) will be plated onto a copper penny. In Part 2, copper from a penny will be plated onto a nickel.
This book was written to accompany the Tufts University introductory engineering course, …
This book was written to accompany the Tufts University introductory engineering course, "Engineering in the Kitchen". The book covers foundational topics in the course, including circuit analysis, Python programming, microcontroller I/O using MicroPython, and computer networking.
Euler's formula relates the complex exponential to the cosine and sine functions. …
Euler's formula relates the complex exponential to the cosine and sine functions. This formula is the most important tool in AC analysis. It is why electrical engineers need to understand complex numbers. Created by Willy McAllister.
In this book I've attempted an innovation in the order of topics …
In this book I've attempted an innovation in the order of topics for freshman E&M, the goal being to follow the logical sequence while also providing plenty of opportunities for relating abstract ideas to hands-on experience. The typical sequence starts by slogging through Coulomb's law, the electric field, and Gauss's law, none of which are well suited to practical exploration in the laboratory. In this book, each of the first 5 chapters is short and includes a laboratory exercise that can be completed in about an hour and a half. The approach I've taken is to introduce the electric and magnetic field on an equal footing (which is in fact the way the subject was developed historically). As empirically motivated postulates, we take some primitive ideas about relativity along with the expressions for the energy and momentum density of the fields.
Another goal is to introduce the laws of physics in their natural, local form, i.e., Maxwell's equations in differential rather than integral form, without getting bogged down in an extensive development of the toolbox of vector calculus that would be more appropriate in an honors text like Purcell. Much of the necessary apparatus of div, grad, and curl is developed first in visual or qualitative form.
The Girls Who Build: Make Your Own Wearables workshop for high school …
The Girls Who Build: Make Your Own Wearables workshop for high school girls is an introduction to computer science, electrical and mechanical engineering through wearable technology. The workshop, developed by MIT Lincoln Laboratory, consists of two major hands-on projects in manufacturing and wearable electronics. These include 3D printing jewelry and laser cutting a purse, as well as programming LEDs to light up when walking. Participants learn the design process, 3D computer modeling, and machine shop tools, in addition to writing code and building a circuit.
The Girls Who Build: Make Your Own Wearables workshop for high school …
The Girls Who Build: Make Your Own Wearables workshop for high school girls is an introduction to computer science, electrical and mechanical engineering through wearable technology. The workshop, developed by MIT Lincoln Laboratory, consists of two major hands-on projects in manufacturing and wearable electronics. These include 3D printing jewelry and laser cutting a purse, as well as programming LEDs to light up when walking. Participants learn the design process, 3D computer modeling, and machine shop tools, in addition to writing code and building a circuit.
Students combine art, gaming culture and engineering by fabricating light-up patches to …
Students combine art, gaming culture and engineering by fabricating light-up patches to increase youngsters’ visibility at night. The open-ended project is presented as a hypothetical design challenge: Students are engineers who have been asked by a group of parents whose children go out Pokémon hunting at night to create glowing patches that they adhere to clothing or backpacks to help vehicle drivers see the kids in the dark. Student pairs create Pokémon character stencil designs cut from iron-on fabric patches, adding transparent layers for color. Placed over an EL (electroluminescent) panel that is connected to a battery pack, the stencils create glowing designs. Each team creates a circuit, which includes lengthening the EL panel wiring to make it easier to wear. Then they sew/adhere the patches onto hoodies, messenger bags, hats, pockets or other applications they dream up. The project concludes with team presentations as if to an audience of project clients. Keep the project simple by hand cutting and ironing/sewing, or use cutting machines, laser cutters and sewing machines, if available.
In this lesson on the brain's neural networks, students investigate the structure …
In this lesson on the brain's neural networks, students investigate the structure and function of the neuron. They discover ways in which engineers apply this knowledge to the development of devices that can activate neurons. After a review of the nervous system specifically its organs, tissue, and specialized cells, called neurons students learn about the parts of the neuron. They explore the cell body, dendrites, axon and axon terminal, and learn how these structures enable neurons to send messages. They learn about the connections between engineering and other fields of study, and the importance of research, as they complete the lesson tasks.
Introduction to the most common circuit elements: resistor, capacitor, and inductor. Introducing …
Introduction to the most common circuit elements: resistor, capacitor, and inductor. Introducing the current-voltage equations for these elements, including Ohm's Law for resistors. Created by Willy McAllister.
The ratio of a sinusoidal voltage to a sinusoidal current is called …
The ratio of a sinusoidal voltage to a sinusoidal current is called "impedance". This is a generalization of Ohm's Law for resistors. We derive the impedance of a resistor, inductor, and capacitor. The inductor and capacitor impedance includes a term for frequency, so the impedance of these components depends on frequency. Created by Willy McAllister.
The impedance of capacitors and inductors in a circuit depend on the …
The impedance of capacitors and inductors in a circuit depend on the frequency of the electric signal. The impedance of an inductor is directly proportional to frequency, while the impedance of a capacitor is inversely proportional to frequency. Created by Willy McAllister.
This course provides an integrated introduction to electrical engineering and computer science, …
This course provides an integrated introduction to electrical engineering and computer science, taught using substantial laboratory experiments with mobile robots. Our primary goal is for you to learn to appreciate and use the fundamental design principles of modularity and abstraction in a variety of contexts from electrical engineering and computer science. Our second goal is to show you that making mathematical models of real systems can help in the design and analysis of those systems. Finally, we have the more typical goals of teaching exciting and important basic material from electrical engineering and computer science, including modern software engineering, linear systems analysis, electronic circuits, and decision-making. Course Format This course has been designed for independent study. It includes all of the materials you will need to understand the concepts covered in this subject. The materials in this course include:
Lecture videos from Spring 2011, taught by Prof. Dennis Freeman Recitation videos, developed for OCW Scholar by teaching assistant Kendra Pugh Course notes Software and design labs Homework assignments and additional exercises Nano-quizzes and exams with solutions
Content Development Leslie Kaelbling Jacob White Harold Abelson Dennis Freeman Tomás Lozano-Pérez Isaac Chuang
This textbook emphasizes connections between theory and application, making physics concepts interesting …
This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigour inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.