Updating search results...

Search Resources

121 Results

View
Selected filters:
  • circuits
Electromagnetics and Applications
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell’s equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.
Acknowledgments
The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Ippen, Erich
Staelin, David
Zahn, Markus
Date Added:
09/01/2005
Electroplating
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this electrochemistry activity, learners will explore two examples of electroplating. In Part 1, zinc from a galvanized nail (an iron nail which has been coated with zinc by dipping it in molten zinc) will be plated onto a copper penny. In Part 2, copper from a penny will be plated onto a nickel.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
Exploratorium
Author:
Don Rathjen
The Exploratorium
Date Added:
11/07/2004
Engineering in the Kitchen
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This book was written to accompany the Tufts University introductory engineering course, "Engineering in the Kitchen". The book covers foundational topics in the course, including circuit analysis, Python programming, microcontroller I/O using MicroPython, and computer networking.

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
Tufts University
Author:
Steven Bell
Date Added:
01/17/2023
Euler's formula
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Euler's formula relates the complex exponential to the cosine and sine functions. This formula is the most important tool in AC analysis. It is why electrical engineers need to understand complex numbers. Created by Willy McAllister.

Subject:
Applied Science
Engineering
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Willy McMaster
Date Added:
08/04/2016
Fields and Circuits
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

In this book I've attempted an innovation in the order of topics for freshman E&M, the goal being to follow the logical sequence while also providing plenty of opportunities for relating abstract ideas to hands-on experience. The typical sequence starts by slogging through Coulomb's law, the electric field, and Gauss's law, none of which are well suited to practical exploration in the laboratory. In this book, each of the first 5 chapters is short and includes a laboratory exercise that can be completed in about an hour and a half. The approach I've taken is to introduce the electric and magnetic field on an equal footing (which is in fact the way the subject was developed historically). As empirically motivated postulates, we take some primitive ideas about relativity along with the expressions for the energy and momentum density of the fields.

Another goal is to introduce the laws of physics in their natural, local form, i.e., Maxwell's equations in differential rather than integral form, without getting bogged down in an extensive development of the toolbox of vector calculus that would be more appropriate in an honors text like Purcell. Much of the necessary apparatus of div, grad, and curl is developed first in visual or qualitative form.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Light and Matter
Author:
Benjamin Crowell
Date Added:
01/01/2018
Girls Who Build: Make Your Own Wearables Workshop
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Girls Who Build: Make Your Own Wearables workshop for high school girls is an introduction to computer science, electrical and mechanical engineering through wearable technology. The workshop, developed by MIT Lincoln Laboratory, consists of two major hands-on projects in manufacturing and wearable electronics. These include 3D printing jewelry and laser cutting a purse, as well as programming LEDs to light up when walking. Participants learn the design process, 3D computer modeling, and machine shop tools, in addition to writing code and building a circuit.

Subject:
Applied Science
Computer Science
Education
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Astle, Elisabeth
Gibson, Mike
Lund, Gavin
Olesnavage, Katy
Railey, Kristen
Scott, David
Watkins, Leslie
Date Added:
02/01/2015
Girls Who Build: Make Your Own Wearables Workshop
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Girls Who Build: Make Your Own Wearables workshop for high school girls is an introduction to computer science, electrical and mechanical engineering through wearable technology. The workshop, developed by MIT Lincoln Laboratory, consists of two major hands-on projects in manufacturing and wearable electronics. These include 3D printing jewelry and laser cutting a purse, as well as programming LEDs to light up when walking. Participants learn the design process, 3D computer modeling, and machine shop tools, in addition to writing code and building a circuit.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Astle, Elisabeth
Gibson, Mike
Lund, Gavin
Olesnavage, Katy
Railey, Kristen
Scott, David
Watkins, Leslie
Date Added:
02/01/2015
Glowing Pokémon Go Patches with EL Panels
Read the Fine Print
Educational Use
Rating
0.0 stars

Students combine art, gaming culture and engineering by fabricating light-up patches to increase youngsters’ visibility at night. The open-ended project is presented as a hypothetical design challenge: Students are engineers who have been asked by a group of parents whose children go out Pokémon hunting at night to create glowing patches that they adhere to clothing or backpacks to help vehicle drivers see the kids in the dark. Student pairs create Pokémon character stencil designs cut from iron-on fabric patches, adding transparent layers for color. Placed over an EL (electroluminescent) panel that is connected to a battery pack, the stencils create glowing designs. Each team creates a circuit, which includes lengthening the EL panel wiring to make it easier to wear. Then they sew/adhere the patches onto hoodies, messenger bags, hats, pockets or other applications they dream up. The project concludes with team presentations as if to an audience of project clients. Keep the project simple by hand cutting and ironing/sewing, or use cutting machines, laser cutters and sewing machines, if available.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Angela Sheehan
Kent Kurashima
Date Added:
05/30/2018
Highlighting the Neuron
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson on the brain's neural networks, students investigate the structure and function of the neuron. They discover ways in which engineers apply this knowledge to the development of devices that can activate neurons. After a review of the nervous system specifically its organs, tissue, and specialized cells, called neurons students learn about the parts of the neuron. They explore the cell body, dendrites, axon and axon terminal, and learn how these structures enable neurons to send messages. They learn about the connections between engineering and other fields of study, and the importance of research, as they complete the lesson tasks.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janelle Orange
Date Added:
09/18/2014
Ideal circuit elements
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to the most common circuit elements: resistor, capacitor, and inductor. Introducing the current-voltage equations for these elements, including Ohm's Law for resistors. Created by Willy McAllister.

Subject:
Applied Science
Engineering
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Willy McMaster
Date Added:
05/22/2016
Impedance
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The ratio of a sinusoidal voltage to a sinusoidal current is called "impedance". This is a generalization of Ohm's Law for resistors. We derive the impedance of a resistor, inductor, and capacitor. The inductor and capacitor impedance includes a term for frequency, so the impedance of these components depends on frequency. Created by Willy McAllister.

Subject:
Applied Science
Engineering
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Willy McMaster
Date Added:
08/05/2016
Impedance vs frequency
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The impedance of capacitors and inductors in a circuit depend on the frequency of the electric signal. The impedance of an inductor is directly proportional to frequency, while the impedance of a capacitor is inversely proportional to frequency. Created by Willy McAllister.

Subject:
Applied Science
Engineering
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Willy McMaster
Date Added:
08/17/2016
Introduction to Electrical Engineering and Computer Science I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides an integrated introduction to electrical engineering and computer science, taught using substantial laboratory experiments with mobile robots. Our primary goal is for you to learn to appreciate and use the fundamental design principles of modularity and abstraction in a variety of contexts from electrical engineering and computer science.
Our second goal is to show you that making mathematical models of real systems can help in the design and analysis of those systems. Finally, we have the more typical goals of teaching exciting and important basic material from electrical engineering and computer science, including modern software engineering, linear systems analysis, electronic circuits, and decision-making.
Course Format
This course has been designed for independent study. It includes all of the materials you will need to understand the concepts covered in this subject. The materials in this course include:

Lecture videos from Spring 2011, taught by Prof. Dennis Freeman
Recitation videos, developed for OCW Scholar by teaching assistant Kendra Pugh
Course notes
Software and design labs
Homework assignments and additional exercises
Nano-quizzes and exams with solutions

Content Development
Leslie Kaelbling 
Jacob White 
Harold Abelson 
Dennis Freeman
Tomás Lozano-Pérez 
Isaac Chuang

Subject:
Applied Science
Career and Technical Education
Computer Science
Electronic Technology
Engineering
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Abelson, Harold
Chuang, Isaac
Freeman, Dennis
Kaelbling, Leslie
Lozano-Pérez, Tomás
White, Jacob
Date Added:
02/01/2011
Introduction to Electricity, Magnetism, and Circuits
Unrestricted Use
CC BY
Rating
0.0 stars

This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigour inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
eCampusOntario
Author:
Daryl Janzen
Date Added:
06/08/2019