Students learn about five types of renewable energy that are part of …
Students learn about five types of renewable energy that are part of engineering solutions to help people in rural communities use less and cleaner energy for cooking and heating. Specifically, students learn about the pollution and health challenges facing families in rural China, and they are introduced to the concept of optimization. Through an energy game, students differentiate between renewable and non-renewable sources of energy.
In this Spanish 3 lesson students will use prior knowledge from a …
In this Spanish 3 lesson students will use prior knowledge from a variety of previous units to access information in articles from Spanish Speaking countries and government agencies to learn about how climate change affects respiratory health and what some countries are doing to mitigate the harm.
Students learn about electricity and air pollution while building devices to measure …
Students learn about electricity and air pollution while building devices to measure volatile organic compounds (VOC) by attaching VOC sensors to prototyping boards. In the second part of the activity, students evaluate the impact of various indoor air pollutants using the devices they made.
Students take virtual field trips to explore air quality research sites and …
Students take virtual field trips to explore air quality research sites and investigate the causes, effects, and solutions to nitrogen deposition in Rocky Mountain National Park during this module.
Students take an in-depth look at what goes into planning a research …
Students take an in-depth look at what goes into planning a research project, which prepares them to take the lead on their own projects. Examining a case study, students first practice planning a research project that compares traditional cook stoves to improved cook stoves for use in the developing world. Then they compare their plans to one used in the real-world by professional researchers, gaining perspective and details on the thought and planning that goes into good research work. Then students are provided with example materials, a blank template and support to take them from brainstorming to completing a detailed research plan for their own air quality research projects. Conducting students’ AQ-IQ research studies requires additional time and equipment beyond this planning activity. Then after the data is collected and analyzed, teams interpret the data and present summary research posters by conducting the next associated activity Numerous student handouts and a PowerPoint® presentation are provided.
Students are introduced to the health risks caused by cooking and heating …
Students are introduced to the health risks caused by cooking and heating with inefficient cook stoves inside homes, a common practice in rural developing communities. Students simulate the cook stove scenario and use the engineering design process, including iterative trials, to increase warmth inside a building while reducing air quality problems. Students then collect and graph data, and analyze their findings.
Students build on their existing air quality knowledge and a description of …
Students build on their existing air quality knowledge and a description of a data set to each develop a hypothesis around how and why air pollutants vary on a daily and seasonal basis. Then they are guided by a worksheet through an Excel-based analysis of the data. This includes entering formulas to calculate statistics and creating plots of the data. As students complete each phase of the analysis, reflection questions guide their understanding of what new information the analysis reveals. At activity end, students evaluate their original hypotheses and “put all of the pieces together.” The activity includes one carbon dioxide worksheet/data set and one ozone worksheet/data set; providing students and/or instructors with a content option. The activity also serves as a good standalone introduction to using Excel.
In this unit, students will develop protocols for the collection of sensory …
In this unit, students will develop protocols for the collection of sensory data (scents and/or sounds), plan and execute the field collection of sensory data using developed protocols, analyze collected data, and create a map that communicates findings and impacts on the local population. The advantage of using sensory data is that students are equipped with the analytical equipment (ears and nose) and are familiar with its use. However, students may not have taken the time to consider the variety of perceptions that occur within a group of people who are sharing a sensory experience and the impact that variation can have when collecting and analyzing data and subsequently communicating the results. In this unit, as in the entire module, sensory data is considered in two contexts: First, as an indicator of environmental conditions, and, in some instances, environmental disruption. Second, as a proxy for data that is not as easily collected or as readily analyzed such as air or water samples. One of the challenges of developing these protocols will be discerning individual components from a complex system and developing an approach for systematically recording these data. This, though, gives students important exposure to the challenges of understanding and characterizing today's societal problems, which tend to include many interrelated dynamic causes.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this unit, student groups will evaluate different environmental case studies to …
In this unit, student groups will evaluate different environmental case studies to critically investigate qualitative and quantitative data analysis, collection, and inquiry. Students will begin to consider different forms of sensory-related data collection and how experiential knowledge informs the ways in which one forms analytical, evaluative questions. Student expert groups are provided one case study (different expert groups will examine at least two different cases) that has a number of different kinds of resources that students will examine (e.g. journalistic, scientific, narrative, visual, auditory). Students will use cooperative learning methods to engage with problem-based inquiry rather than have the case study information delivered via instructor-based lecture. Given that students across disciplinary contexts may not have been exposed to scientific methods of investigation, this unit encourages systems thinking alongside other methods of investigation. As students consider the variety of perceptions that occur within a group of people sharing an environmental experience, students are able to consider the impact that different types of data have on one's perception of data collection and its analysis. This exercise also demonstrates the utility of interdisciplinary thinking -- by examining data sets from multiple academic disciplines, students gain a more complete understanding of the case study compared to what they would have understood by examining data from a single research approach. The activity also provides students with an opportunity to practice interdisciplinary thinking and collaboration skills. The cases address several key environmental challenges: soil contamination, water resources, and the impacts of industrial agriculture. A collaborative learning method is used in conjunction with guided class and group discussion to critically examine different types of data and encourage consistency of data analysis between student groups. This unit uses a group exploration and presentation activity to ensure equal distribution of materials and accountability among class participants. In essence, the students teach each other about the case studies with the instructor providing questions to elicit depth and synthesis between groups as well as to ensure that critical data analysis is undertaken.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This course examines the policy, politics, planning, and engineering of transportation systems …
This course examines the policy, politics, planning, and engineering of transportation systems in urban areas, with a special focus on the Boston area. It covers the role of the federal, state, and local government and the MPO, public transit in the era of the automobile, analysis of current trends and pattern breaks; analytical tools for transportation planning, traffic engineering, and policy analysis; the contribution of transportation to air pollution, social costs, and climate change; land use and transportation interactions, and more. Transportation sustainability is a central theme throughout the course, as well as consideration of if and how it is possible to resolve the tension between the three E’s (environment, economy, and equity). The goal of this course is to elicit discussion, stimulate independent thinking, and encourage students to understand and challenge the “conventional wisdom” of transportation planning.
This course examines the policy, politics, planning, and engineering of transportation systems …
This course examines the policy, politics, planning, and engineering of transportation systems in urban areas, with a special focus on the Boston area. It covers the role of the federal, state, and local government and the MPO, public transit in the era of the automobile, analysis of current trends and pattern breaks; analytical tools for transportation planning, traffic engineering, and policy analysis; the contribution of transportation to air pollution, social costs, and climate change; land use and transportation interactions, and more. Transportation sustainability is a central theme throughout the course, as well as consideration of if and how it is possible to resolve the tension between the three E’s (environment, economy, and equity). The goal of this course is to elicit discussion, stimulate independent thinking, and encourage students to understand and challenge the “conventional wisdom” of transportation planning.
A think-pair-share activity in which students calculate weathering rates from tombstone weathering …
A think-pair-share activity in which students calculate weathering rates from tombstone weathering data.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students develop awareness and understanding of the daily air quality using the …
Students develop awareness and understanding of the daily air quality using the Air Quality Index (AQI) listed in the newspaper. They explore what engineers can do to help reduce poor air quality.
Spreadsheets Across the Curriculum/Geology of National Parks module. Students estimate the net …
Spreadsheets Across the Curriculum/Geology of National Parks module. Students estimate the net volume of pollutants flowing into the Houchin's Narrows entrance of Mammoth Cave using actual air-flow and air-quality data from the park.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.