An introduction to the main techniques of Artifical Intelligence: state-space search methods, …
An introduction to the main techniques of Artifical Intelligence: state-space search methods, semantic networks, theorem-proving and production rule systems. Important applications of these techniques are presented. Students are expected to write programs exemplifying some of techniques taught, using the LISP lanuage.
Grade level: graduate students, advanced undergrads, persons with analyzed research results Course …
Grade level: graduate students, advanced undergrads, persons with analyzed research results
Course length: 1 semester, 4-6 months
Objective: This course empowers scientists to engage with their own data, each other, and the public through art. Through collective brainstorming, prototyping, and feedback from professional artists, students will create a project that expresses their own research through any artistic medium of their choice. The course typically culminates in a public art exhibition where students interact with a general audience to discuss their research, art, and what it means to be a scientist.
This course teaches simple reasoning techniques for complex phenomena: divide and conquer, …
This course teaches simple reasoning techniques for complex phenomena: divide and conquer, dimensional analysis, extreme cases, continuity, scaling, successive approximation, balancing, cheap calculus, and symmetry. Applications are drawn from the physical and biological sciences, mathematics, and engineering. Examples include bird and machine flight, neuron biophysics, weather, prime numbers, and animal locomotion. Emphasis is on low-cost experiments to test ideas and on fostering curiosity about phenomena in the world.
This seminar introduces, through studio projects, the basic principles regarding the use …
This seminar introduces, through studio projects, the basic principles regarding the use of color in the visual arts. Students explore a range of topics, including the historical uses of color in the arts, the interactions between colors, and the psychology of color.
The subject of enumerative combinatorics deals with counting the number of elements …
The subject of enumerative combinatorics deals with counting the number of elements of a finite set. For instance, the number of ways to write a positive integer n as a sum of positive integers, taking order into account, is 2n-1. We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them. This is a subject which requires little mathematical background to reach the frontiers of current research. Students will therefore have the opportunity to do original research. It might be necessary to limit enrollment.
If you look at what psychologists consider to be high-level stressors, you'll …
If you look at what psychologists consider to be high-level stressors, you'll find a list of about 40 life events. We have no control over many of these events, but for more than half, we do. So much of our stress and success in life depends on the decisions we make. In this short course, your students will learn the economic underpinnings of the need to make decisions, why every decision bears a cost, and how to make informed decisions.
In this book, Sanjoy Mahajan shows us that the way to master …
In this book, Sanjoy Mahajan shows us that the way to master complexity is through insight rather than precision. Precision can overwhelm us with information, whereas insight connects seemingly disparate pieces of information into a simple picture. Unlike computers, humans depend on insight. Based on the author’s fifteen years of teaching at MIT, Cambridge University, and Olin College, The Art of Insight in Science and Engineering shows us how to build insight and find understanding, giving readers tools to help them solve any problem in science and engineering. (Description courtesy of MIT Press.)
“The Art of the Probable” addresses the history of scientific ideas, in …
“The Art of the Probable” addresses the history of scientific ideas, in particular the emergence and development of mathematical probability. But it is neither meant to be a history of the exact sciences per se nor an annex to, say, the Course 6 curriculum in probability and statistics. Rather, our objective is to focus on the formal, thematic, and rhetorical features that imaginative literature shares with texts in the history of probability. These shared issues include (but are not limited to): the attempt to quantify or otherwise explain the presence of chance, risk, and contingency in everyday life; the deduction of causes for phenomena that are knowable only in their effects; and, above all, the question of what it means to think and act rationally in an uncertain world. Our course therefore aims to broaden students’ appreciation for and understanding of how literature interacts with – both reflecting upon and contributing to – the scientific understanding of the world. We are just as centrally committed to encouraging students to regard imaginative literature as a unique contribution to knowledge in its own right, and to see literary works of art as objects that demand and richly repay close critical analysis. It is our hope that the course will serve students well if they elect to pursue further work in Literature or other discipline in SHASS, and also enrich or complement their understanding of probability and statistics in other scientific and engineering subjects they elect to take.
We will explore images that pertain to the emergence of Japan as …
We will explore images that pertain to the emergence of Japan as a modern state. We will focus on images that depict Japan as it comes into contact with the rest of the world after its long and deep isolation during the feudal period. We will also cover city planning of Tokyo that took place after WWII, and such topics as the 1964 Tokyo Olympics. A unique feature of this offering is that we will run it concurrently with the edX MOOC and two University of Tokyo MOOCs, Visualizing Postwar Tokyo and Four Faces of Contemporary Japanese Architecture, for much of the remainder of the class.
The Assistive Technology in the Schools Course aims to to familiarize educators …
The Assistive Technology in the Schools Course aims to to familiarize educators and parents with assistive technology devices and services, and provide a foundational understanding of what it means to consider, assess, and implement assistive technology (AT) with students to remove learning barriers. This course includes four modules: Introduction to Assistive Technology, AT Consideration, AT Assessment, and AT Implementation. This first module, Introduction to Assistive Technology, highlights the difference between accessible technology and assistive technology. This module explores examples of how assistive technology devices and services can help reduce learning barriers for students with disabilities across learning environments. Module Objective:Participants will be able to understand and describe inclusive technology and the difference between accessible educational material(AEM), accessible technology, and assistive technology(AT). Participants will be able to identify 3 examples of assistive technology devices/tools that have the potential to remove learning barriers for students.Participants will be able to identify 2 examples of assistive technology services within the education system.
Through this earth science curricular unit, student teams are presented with the …
Through this earth science curricular unit, student teams are presented with the scenario that an asteroid will impact the Earth. In response, their challenge is to design the location and size of underground caverns to shelter the people from an uninhabitable Earth for one year. Driven by this adventure scenario, student teams 1) explore general and geological maps of their fictional state called Alabraska, 2) determine the area of their classroom to help determine the necessary cavern size, 3) learn about map scales, 4) test rocks, 5) identify important and not-so-important rock properties for underground caverns, and 6) choose a final location and size.
Astrobiology Survey is an introductory course on astrobiology. It takes a multi-disciplinary …
Astrobiology Survey is an introductory course on astrobiology. It takes a multi-disciplinary approach that unites the sciences and arts to study the three questions of "How does life begin and evolve?", "Does life exist elsewhere in the universe?" and "What is the future of life on Earth and beyond?"
This course covers the fundamentals of astrodynamics, focusing on the two-body orbital …
This course covers the fundamentals of astrodynamics, focusing on the two-body orbital initial-value and boundary-value problems with applications to space vehicle navigation and guidance for lunar and planetary missions, including both powered flight and midcourse maneuvers. Other topics include celestial mechanics, Kepler’s problem, Lambert’s problem, orbit determination, multi-body methods, mission planning, and recursive algorithms for space navigation. Selected applications from the Apollo, Space Shuttle, and Mars exploration programs are also discussed.
This course provides a graduate-level introduction to stellar astrophysics. It covers a …
This course provides a graduate-level introduction to stellar astrophysics. It covers a variety of topics, ranging from stellar structure and evolution to galactic dynamics and dark matter.
This is the second course in a two-semester sequence on astrophysics. Topics …
This is the second course in a two-semester sequence on astrophysics. Topics include galactic dynamics, groups and clusters on galaxies, phenomenological cosmology, Newtonian cosmology, Roberston-Walker models, and galaxy formation.
This undergraduate class is designed to introduce students to the physics that …
This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet. Acknowledgments Prof. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall.
This undergraduate class is designed to introduce students to the physics that …
This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet. Acknowledgments Prof. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall.
This course explores the physical processes that control Earth's atmosphere, ocean, and …
This course explores the physical processes that control Earth's atmosphere, ocean, and climate. Quantitative methods for constructing mass and energy budgets. Topics include clouds, rain, severe storms, regional climate, the ozone layer, air pollution, ocean currents and productivity, the seasons, El Nio, the history of Earth's climate, global warming, energy, and water resources.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.