Updating search results...

Search Resources

1597 Results

View
Selected filters:
  • iowa-stem
Discovering Relationships between Side Length and Area
Read the Fine Print
Educational Use
Rating
0.0 stars

Through this lesson and its two associated activities, students are introduced to the use of geometry in engineering design, and conclude by making scale models of objects of their choice. The practice of developing scale models is often used in engineering design to analyze the effectiveness of proposed design solutions. In this lesson, students complete fencing (square) and fire pit (circle) word problems on two worksheets—which involves side and radius dimensions, perimeters, circumferences and areas—guiding them to discover the relationships between the side length of a square and its area, and the radius of a circle and its area. They also think of real-world engineering applications of the geometry concepts.

Subject:
Geometry
Mathematics
Measurement and Data
Material Type:
Lesson
Provider:
TeachEngineering
Author:
Aaron Lamplugh
Maia Vadeen
Malinda Zarske
Nathan Coyle
Russell Anderson
Ryan Sullivan
Date Added:
02/07/2017
Diseases Exposed: ESR Test in the Classroom
Read the Fine Print
Educational Use
Rating
0.0 stars

Students demonstrate the erythrocyte sedimentation rate test (ESR test) using a blood model composed of tomato juice, petroleum jelly and olive oil. They simulate different disease conditions, including rheumatoid arthritis, anemia, leukocytosis and sickle-cell anemia, by making appropriate variations in the particle as well as in the fluid matrix. Students measure the ESR for each sample blood model, correlate the ESR values with disease conditions and confirm that diseases alter blood composition and properties. During the activity, students learn that when non-coagulated blood is let to stand in a tube, the red blood cells separate and fall to the bottom of the tube, resulting in a sediment and a clear liquid called serum. The height in millimeters of the clear liquid on top of the sediment in a time period of one hour is taken as the sedimentation rate. If a disease is present, this ESR value deviates from the normal, disease-free value. Different diseases cause different ESR values because blood composition and properties, such as density and viscosity, are altered differently by different diseases. Thus, the ESR test serves as a real-world diagnostic screening test to identify indications of the presence of any diseases in people.

Subject:
Career and Technical Education
Chemistry
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Renuka Rajasekaran
Date Added:
02/03/2017
Distorted Disturbances
Read the Fine Print
Educational Use
Rating
0.0 stars

Students pass around and distort messages written on index cards to learn how we use signals from GPS occultations to study the atmosphere. The cards represent information sent from GPS satellites being distorted as they pass through different locations in the Earth's atmosphere and reach other satellites. Analyzing GPS occultations enables better global weather forecasting, storm tracking and climate change monitoring.

Subject:
Applied Science
Engineering
Physical Geography
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jonah Kisesi
Marissa H. Forbes
Penina Axelrad
Date Added:
09/18/2014
Do Plants Eat?
Read the Fine Print
Educational Use
Rating
0.0 stars

Through a teacher-led discussion, students realize that the food energy plants obtain comes from sunlight via the plant process of photosynthesis. They learn what photosynthesis is, at an age-appropriate level of detail and vocabulary, and then begin to question how we know that photosynthesis occurs, if we can't see it happening. Elodea is a common water plant that students can use to directly observe evidence of photosynthesis. When Elodea is placed in a glass beaker near a good light source, bubbles of oxygen will be released as products of photosynthesis. By counting the number of bubbles that rise to the surface in a five-minute period, students can compare the photosynthetic activity of Elodea in the presence of high and low light levels.

Subject:
Applied Science
Botany
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
Do Ptarmigans Have Snowshoes?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the amazing adaptations of the ptarmigan to the alpine tundra. They focus one adaptation, the feathered feet of the ptarmigan, and ask whether the feathers serve to only keep the feet warm or to also provide the bird with floatation capability. They create model ptarmigan feet, with and without feathers, and test the hypothesis on the function of the feathers. Ultimately, students make a claim about whether the feathers provide floatation and support this claim with their testing evidence.

Subject:
Applied Science
Engineering
Life Science
Zoology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chelsea Heveran
Date Added:
10/14/2015
Do You Have the Strength?
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students squeeze a tennis ball to demonstrate the strength of the human heart. Working in teams, they think of ways to keep the heart beating if the natural mechanism were to fail. The goal of this activity is to get students to understand the strength and resilience of the heart.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Teaching/Learning Strategy
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denali Lander
Janet Yowell
Jessica Todd
Julie Marquez
Malinda Schaefer Zarske
Sara Born
Date Added:
09/18/2014
Do You See What I See?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the concept of optical character recognition (OCR) in a problem-solving environment. They research OCR and OCR techniques and then apply those methods to the design challenge by developing algorithms capable of correctly "reading" a number on a typical high school sports scoreboard. Students use the structure of the engineering design process to guide them to develop successful algorithms. In the associated activity, student groups implement, test and revise their algorithms. This software design lesson/activity set is designed to be part of a Java programming class.

Subject:
Applied Science
Computing and Information
Education
Engineering
Technology
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Derek Babb
Date Added:
09/18/2014
Do as the Romans: Construct an Aqueduct!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work with specified materials to create aqueduct components that can transport two liters of water across a short distance in their classroom. The design challenge is to create an aqueduct that can supply Aqueductis, a (hypothetical) Roman city, with clean water for private homes, public baths and fountains as well as crop irrigation.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Does Contact Area Matter?
Read the Fine Print
Educational Use
Rating
0.0 stars

Using the same method for measuring friction that was used in the previous lesson (Discovering Friction), students design and conduct experiments to determine if the amount of area over which an object contacts a surface it is moving across affects the amount of friction encountered.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
Does It Cut It? Understanding Wind Turbine Blade Performance
Read the Fine Print
Educational Use
Rating
0.0 stars

Students gain an understanding of the factors that affect wind turbine operation. Following the steps of the engineering design process, engineering teams use simple materials (cardboard and wooden dowels) to build and test their own turbine blade prototypes with the objective of maximizing electrical power output for a hypothetical situation—helping scientists power their electrical devices while doing research on a remote island. Teams explore how blade size, shape, weight and rotation interact to achieve maximal performance, and relate the power generated to energy consumed on a scale that is relevant to them in daily life. A PowerPoint® presentation, worksheet and post-activity test are provided.

Subject:
Career and Technical Education
Mathematics
Measurement and Data
Numbers and Operations
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Alexander Kon
Date Added:
02/07/2017
Does It Work? Test and Test Again
Read the Fine Print
Educational Use
Rating
0.0 stars

Testing is critical to any design, whether the creation of new software or a bridge across a wide river. Despite risking the quality of the design, the testing stage is often hurried in order to get products to market. In this lesson, students focus on the testing phase of the software/systems design process. They start by exploring existing examples of program testing using the CodingBat website, which contains a series of problems and challenges that students solve using the Java programming language. Working in teams, students practice writing test cases for other groups' code, and then write test cases for a program before writing the program itself.

Subject:
Applied Science
Computing and Information
Education
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Janet Yowell
Ryan Stejskal
Date Added:
09/18/2014
Does Media Matter? Infiltration Rates and Storage Capacities
Read the Fine Print
Educational Use
Rating
0.0 stars

Students gain a basic understanding of the properties of media soil, sand, compost, gravel and how these materials affect the movement of water (infiltration/percolation) into and below the surface of the ground. They learn about permeability, porosity, particle size, surface area, capillary action, storage capacity and field capacity, and how the characteristics of the materials that compose the media layer ultimately affect the recharging of groundwater tables. They test each type of material, determining storage capacity, field capacity and infiltration rates, seeing the effect of media size on infiltration rate and storage. Then teams apply the testing results to the design their own material mixes that best meet the design requirements. To conclude, they talk about how engineers apply what students learned in the activity about the infiltration rates of different soil materials to the design of stormwater management systems.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brigith Soto
Jennifer Butler
Krysta Porteus
Maya Trotz
Ryan Locicero
William Zeman
Date Added:
09/18/2014
Does My Model Valve Stack up to the Real Thing?
Read the Fine Print
Educational Use
Rating
0.0 stars

Following the steps of the iterative engineering design process, student teams use what they learned in the previous lessons and activity in this unit to research and choose materials for their model heart valves and test those materials to compare their properties to known properties of real heart valve tissues. Once testing is complete, they choose final materials and design and construct prototype valve models, then test them and evaluate their data. Based on their evaluations, students consider how they might redesign their models for improvement and then change some aspect of their models and retest aiming to design optimal heart valve models as solutions to the unit's overarching design challenge. They conclude by presenting for client review, in both verbal and written portfolio/report formats, summaries and descriptions of their final products with supporting data.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michael Duplessis
Date Added:
10/14/2015
Does Weight Matter?
Read the Fine Print
Educational Use
Rating
0.0 stars

Using the same method for measuring friction that was used in the previous lesson (Discovering Friction), students design and conduct an experiment to determine if weight added incrementally to an object affects the amount of friction encountered when it slides across a flat surface. After graphing the data from their experiments, students can calculate the coefficients of friction between the object and the surface it moved upon, for both static and kinetic friction.

Subject:
Applied Science
Engineering
Mathematics
Measurement and Data
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/26/2008
Does Your Chewing Gum Lose Its Sweetness?
Read the Fine Print
Educational Use
Rating
0.0 stars

In the first part of the activity, each student chews a piece of gum until it loses its sweetness, and then leaves the gum to dry for several days before weighing it to determine the amount of mass lost. This mass corresponds to the amount of sugar in the gum, and can be compared to the amount stated on the package label. In the second part of the activity, students work in groups to design and conduct new experiments based on questions of their own choosing. These questions arise naturally from observations during the first experiment, and from students' own experiences with and knowledge of the many varieties of chewing and bubble gums available.

Subject:
Applied Science
Engineering
Life Science
Nutrition
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
Dome It Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

How does infrastructure meet our needs? What happens when we are cut off from that supporting infrastructure? As a class, students brainstorm, identify and explore the pathways where their food, water and energy originate, and where wastewater and solid waste go. After creating a diagram that maps a neighborhood's inputs and waste outputs, closed and open system concepts are introduced by imagining the neighborhood enclosed in a giant dome, cut off from its infrastructure systems. Students consider the implications and the importance of sustainable resource and waste management. They learn that resources are interdependent and that recycling wastes into resources is key to sustain a closed system.

Subject:
Applied Science
Education
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caryssa Joustra
Daniel Yeh
Emanuel Burch
Erin Morrison
George Dick
Ivy Drexler
Jorge Calabria
Onur Ozcan
Robert Bair
Stephanie Quintero
Date Added:
09/18/2014
Dome It Challenge Scenario Cards
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams find solutions to hypothetical challenge scenarios that require them to sustainably manage both resources and wastes. They begin by creating a card representing themselves and the resources (inputs) they need and wastes (outputs) they produce. Then they incorporate additional cards for food and energy components and associated necessary resources and waste products. They draw connections between outputs that provide inputs for other needs, and explore the problem of using linear solutions in resource-limited environments. Then students incorporate cards based on biorecycling technologies, such as algae photobioreactors and anaerobic digesters in order to make circular connections. Finally, the student teams present their complete biorecycling engineering solutions to their scenarios in poster format by connecting outputs to inputs, and showing the cycles of how wastes become resources.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caryssa Joustra
Daniel Yeh
Emanuel Burch
Erin Morrison
George Dick
Ivy Drexler
Jorge Calabria
Onur Ozcan
Robert Bair
Stephanie Quintero
Date Added:
09/18/2014
Don't Be a Square
Read the Fine Print
Educational Use
Rating
0.0 stars

After watching video clips from the Harry Potter and the Goblet of Fire movie, students explore the use of Punnett squares to predict genetic trait inheritance. The objective of this lesson is to articulate concepts related to genetics through direct immersive interaction based on the theme, The Science Behind Harry Potter. Students' interest is piqued by the use of popular culture in the classroom.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
Rachel Howser
Date Added:
09/18/2014
Don't Bump into Me!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students' understanding of how robotic ultrasonic sensors work is reinforced in a design challenge involving LEGO MINDSTORMS(TM) NXT robots and ultrasonic sensors. Student groups program their robots to move freely without bumping into obstacles (toy LEGO people). They practice and learn programming skills and logic design in parallel. They see how robots take input from ultrasonic sensors and use it to make decisions to move, resulting in behavior similar to the human sense of sight but through the use of sound sensors, more like echolocation. Students design-test-redesign-retest to achieve successful programs. A PowerPoint® presentation and pre/post quizzes are provided.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Nishant Sinha
Pranit Samarth
Satish S. Nair
Date Added:
09/18/2014