The activity follows a progression that examines the CO2 content of various …
The activity follows a progression that examines the CO2 content of various gases, explores the changes in the atmospheric levels of CO2 from 1958 to 2000 from the Mauna Loa Keeling curve, and the relationship between CO2 and temperature over the past 160,000 years. This provides a foundation for examining individuals' input of CO2 to the atmosphere and how to reduce it.
In Global Climate Summit, students are all assigned to be the leaders …
In Global Climate Summit, students are all assigned to be the leaders of specific countries in the world, and they have all been invited to an international environmental summit. Students will research factors in their countries and, using this information, will decide how climate change could affect their country and how their policies could help reduce greenhouse gas emissions. Students then run a global climate summit in class to defend their perspectives and ultimately decide who has the responsibility to reduce climate emissions and how it can be accomplished.
Access to sustainable modern energy services is fundamental for economic growth and …
Access to sustainable modern energy services is fundamental for economic growth and human development. It is one of the Sustainable Development Goals laid out in 2015 by the United Nations (SDG 7). Access considers two dimensions:
Electricity: Access advances education, health, productivity, security, comfort, and entertainment. It also facilitates higher-value economic opportunities. Clean cooking fuels: Access improves the lives of women and children by dramatically reducing health impacts related to indoor air pollution, decreasing the exposure to risks associated with collecting traditional biomass, and increasing available time that can be devoted to other economic activities. Energy access and consumption are highly related to the Human Development Index (HDI) that takes into account life expectancy, education, and health to measure a country’s well-being. A country’s fuel mix is also related to its level of development: less developed countries use a higher share of traditional biomass, while more developed countries use more electricity.
Nevertheless, a significant portion of the world population still does not have access to reliable electricity or clean cooking fuels, creating a challenge for equity in development opportunities.
A simple click-through animation from Scripps Institute's Earthguide program breaks the complex …
A simple click-through animation from Scripps Institute's Earthguide program breaks the complex topic of the global energy balance into separate concepts. Slides describe the different pathways for incoming and outgoing radiation.
Have you seen a Clean Coal baseball cap? In the challenge to …
Have you seen a Clean Coal baseball cap? In the challenge to meet soaring energy demand with limited resources, volatile issues like those related to the environment, national security and public health are often addressed outside of normal market transactions and are called externalities, or nonmarket factors. Stakeholders can act in resourceful ways to create a nonmarket environment that best serves their interest. A firm may challenge a law that makes it expensive or difficult to do business or compete with others, for example. An individual may organize a boycott of products or services that violate the individual's interests or principles--hey, don't buy from them! Nonmarket strategy in the energy sector is the subject of this engaging course.
This course introduces the basic science underpinning our knowledge of the climate …
This course introduces the basic science underpinning our knowledge of the climate system, how climate has changed in the past, and how it may change in the future. The course focuses on the fundamental energy balance between incoming solar radiation and outgoing infrared radiation in the climate system, and how this balance is affected by greenhouse gases. We will also discuss physical processes that shape the climate, such as atmospheric and oceanic convection and large-scale circulation, solar variability, orbital mechanics, and aerosols, as well as the evidence for past and present climate change. We will discuss climate models of varying degrees of complexity, and you will be able to run a model of a single column of the Earth’s atmosphere to simulate many of the important elements of climate change. This course is part of the Open Learning Library, which is free to use. You have the option to sign up and enroll in the course if you want to track your progress, or you can view and use all the materials without enrolling.
This video segment adapted from NOVA/FRONTLINE looks at the future of global …
This video segment adapted from NOVA/FRONTLINE looks at the future of global warming as developing nations, including India and China, increase their need for energy.
Is the hydrogen car the answer to global warming? This video segment …
Is the hydrogen car the answer to global warming? This video segment adapted from NOVA/FRONTLINE looks at the pros and cons of this developing technology.
This video segment adapted from NOVA/FRONTLINE examines the greenhouse effect, its role …
This video segment adapted from NOVA/FRONTLINE examines the greenhouse effect, its role in keeping Earth habitable, and the industrial changes that have led to an increase in the planet's average temperature.
Students explore the use of wind power in the design, construction and …
Students explore the use of wind power in the design, construction and testing of "sail cars," which, in this case, are little wheeled carts with masts and sails that are powered by the moving air generated from a box fan. The scientific method is reviewed and reinforced with the use of controls and variables, and the engineering design process is explored. The focus of the activity is on renewable energy, as well as the design, testing and redesign of small cars made from household materials. The activity (and an extension worksheet) includes the use of kinematic equations using distance, time traveled and speed to enforce exponents and decimals.
Students learn about energy flow in food webs, including the roles of …
Students learn about energy flow in food webs, including the roles of the sun, producers, consumers and decomposers in the energy cycle. They model a food web and create diagrams of food webs using their own drawings and/or images from nature or wildlife magazines. Students investigate the links between the sun, plants and animals, building their understanding of the web of nutrient dependency and energy transfer.
Students learn about energy and nutrient flow in various biosphere climates and …
Students learn about energy and nutrient flow in various biosphere climates and environments. They learn about herbivores, carnivores, omnivores, food chains and food webs, seeing the interdependence between producers, consumers and decomposers. Students are introduced to the roles of the hydrologic (water), carbon, and nitrogen cycles in sustaining the worlds' ecosystems so living organisms survive. This lesson is part of a series of six lessons in which students use their growing understanding of various environments and the engineering design process, to design and create their own model biodome ecosystems.
Students learn about water poverty and how water engineers can develop appropriate …
Students learn about water poverty and how water engineers can develop appropriate solutions to a problem that is plaguing nearly a sixth of the world's population. Students follow the engineering design process to design a gravity-fed water system. They choose between different system parameters such as pipe sizes, elevation differentials between entry and exit pipes, pipe lengths and tube locations to find a design that provides the maximum flow and minimum water turbidity (cloudiness) at the point of use. In this activity, students play the role of water engineers by designing and building model gravity-fed water systems, learning the key elements necessary for viable projects that help improve the lives people in developing communities.
In this activity, students will use cookies to simulate the distribution of …
In this activity, students will use cookies to simulate the distribution of our nonrenewable resources (energy). Then, they will discuss how the world's growing population affects the fairness and effectiveness of this distribution of these resources and how engineers work to develop technologies to support the population.
This is a debate-style learning activity in which student teams learn about …
This is a debate-style learning activity in which student teams learn about energy sources and are then assigned to represent the different energy sources. Working cooperatively, students develop arguments on the pros and cons of their source over the others.
This is a series of 10 short videos, hosted by the National …
This is a series of 10 short videos, hosted by the National Science Foundation, each featuring scientists, research, and green technologies. The overall goal of this series is to encourage people to ask questions and look beyond fossil fuels for innovative solutions to our ever-growing energy needs.
Students form expert engineering teams working for the (fictional) alternative energy consulting …
Students form expert engineering teams working for the (fictional) alternative energy consulting firm, Greenewables, Inc. Each team specializes in a form of renewable energy used to generate electrical power: passive solar, solar photovoltaic, wind power, low-impact hydropower, biomass, geothermal and (for more advanced students) hydrogen fuel cells. Teams produce poster presentations making a case for their technology and produce an accompanying PDF document using Adobe Acrobat that summarizes the presentation. This activity is geared towards fifth-grade and older students, and Internet research capabilities are required. Some portions of this activity may be appropriate with younger students.
Build your own miniature "greenhouse" out of a plastic container and plastic …
Build your own miniature "greenhouse" out of a plastic container and plastic wrap, and fill it with different things such as dirt and sand to observe the effect this has on temperature. Monitor the temperature using temperature probes and digitally plot the data on the graphs provided in the activity.
In this role-play activity, students take the roles of various important players …
In this role-play activity, students take the roles of various important players in the climate change policy negotiation including politicians, scientists, environmentalists, and industry representatives. Working in these roles, students must take a position, debate with others, and then vote on legislation designed to reduce greenhouse gas emissions in the United States. Can be used in a variety of courses including writing and rhetoric, and social sciences.
Make your own miniature greenhouse and measure the light levels at different …
Make your own miniature greenhouse and measure the light levels at different "times of day"--modeled by changing the angle of a lamp on the greenhouse--using a light sensor. Next, investigate the temperature in your greenhouse with and without a cover. Learn how a greenhouse works and how you can regulate the temperature in your model greenhouse.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.