Unit 3 addresses concepts related to urban-atmosphere interactions. The content explores how …
Unit 3 addresses concepts related to urban-atmosphere interactions. The content explores how urban landscapes and atmospheric constituents modify or interact with the atmosphere to affect temperature, clouds, rainfall, and other parts of the water cycle. Fundamental concepts of weather and climate are established. The unit then transitions to focus on the "urbanized" environment and its complex interactions with the atmosphere. Students will learn about interactions such as 1) urban modification of surface temperature and energy exchanges; 2) water cycle components; 3) cloud-rainfall evolution within urban environments; and 4) applications to real societal challenges like urban flooding. The unit integrates basic meteorological/climatological analyses, geospatial thinking, and integration of scientific concepts within a real world context.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Landslides can have profound societal consequences, such as did the slide that …
Landslides can have profound societal consequences, such as did the slide that occurred near Oso, Washington in 2014. Forty-three people were killed and entire rural neighborhood was destroyed. In this unit, students consider the larger-scale tectonic and climatic setting for the landslide and subsequently use lidar and SRTM (Shuttle Radar Topography Mission) hillshade images, topographic maps, and InSAR (interferometric synthetic aperture radar) to determine relationships between landscape characteristics and different types of mass-wasting events. They conclude by considering the societal costs of such a disaster and ways that communities in similar situations may mitigate their risk.
Show more about Online Teaching suggestions Hide Online-adaptable: The exercises in unit are completely digital and thus at a logistical level it can be switched to online fairly easily. However, due to the relative complexity of the data investigations and group discussions, there will still be a fair bit of instructor support needed and/or extended small group that should be arranged.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this unit, student groups will evaluate different environmental case studies to …
In this unit, student groups will evaluate different environmental case studies to critically investigate qualitative and quantitative data analysis, collection, and inquiry. Students will begin to consider different forms of sensory-related data collection and how experiential knowledge informs the ways in which one forms analytical, evaluative questions. Student expert groups are provided one case study (different expert groups will examine at least two different cases) that has a number of different kinds of resources that students will examine (e.g. journalistic, scientific, narrative, visual, auditory). Students will use cooperative learning methods to engage with problem-based inquiry rather than have the case study information delivered via instructor-based lecture. Given that students across disciplinary contexts may not have been exposed to scientific methods of investigation, this unit encourages systems thinking alongside other methods of investigation. As students consider the variety of perceptions that occur within a group of people sharing an environmental experience, students are able to consider the impact that different types of data have on one's perception of data collection and its analysis. This exercise also demonstrates the utility of interdisciplinary thinking -- by examining data sets from multiple academic disciplines, students gain a more complete understanding of the case study compared to what they would have understood by examining data from a single research approach. The activity also provides students with an opportunity to practice interdisciplinary thinking and collaboration skills. The cases address several key environmental challenges: soil contamination, water resources, and the impacts of industrial agriculture. A collaborative learning method is used in conjunction with guided class and group discussion to critically examine different types of data and encourage consistency of data analysis between student groups. This unit uses a group exploration and presentation activity to ensure equal distribution of materials and accountability among class participants. In essence, the students teach each other about the case studies with the instructor providing questions to elicit depth and synthesis between groups as well as to ensure that critical data analysis is undertaken.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Units 4, 5, and 6 provide the opportunity for students to delve …
Units 4, 5, and 6 provide the opportunity for students to delve into a greater examination of food security at a regional level in small teams selecting one of the following locations (Caribbean, New York City, or Nebraska) OR a new location of their choice (provided that information and datasets are easily available and students will work with the instructor prior to the start of the unit) to apply skills and concepts taught in Units 1-3. Unit 4 materials are designed to provide a place-based overview for students to prepare them for the summative assessment, to be submitted in Unit 6, a community-based action plan of how the selected community can increase food security and lessen vulnerability.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Is groundwater mining sustainable? In Unit 4 students compare and contrast long-term …
Is groundwater mining sustainable? In Unit 4 students compare and contrast long-term (decades) groundwater well levels in six states representing the East Coast, West Coast, and Midwest Plains states. Satellite imagery maps of the well locations will give students an idea of the land cover, specifically the presence of irrigated crops. Using groundwater well data from the USGS, students will recognize the depletion of aquifers in the western United States (e.g., the Ogallala/High Plains Aquifer), or groundwater mining, as an unsustainable practice.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students will read and summarize an article that details scientific studies on …
Students will read and summarize an article that details scientific studies on behavioral changes of gray whales. Discussed are their feeding behavior, migratory behavior, and breeding patterns in the Pacific. Students will examine the whales' responses and discuss in small groups how the responses relate to climate change. By interpreting potential links between gray whale behavior and changed ocean conditions, students will be able to infer the ecological role that gray whales play within a community and an ecosystem. Students will summarize the main concepts, scientific evidence, data and observations cited, and justify why gray whales can be considered "ecosystem sentinels."
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Building on the work they did in Unit 3, students will perform …
Building on the work they did in Unit 3, students will perform an "ecocritical" rhetorical reading (the theoretical lens for examining the way that literary texts engage with climate and climate issues) in order to analyze a short story chosen from several provided by the instructor. They will utilize literary terminology in discussing this text and generating a rhetorical analysis of it.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this unit, students construct and present a standards-based, K -- 8 …
In this unit, students construct and present a standards-based, K -- 8 Soils, Systems, and Society Kit that consists of lessons and supporting materials around a locally and broadly relevant societal issue that involves soils. After learning about the Kit assignment and choosing their societal issue, students have at least two weeks outside of classwork time to develop a kit that integrates soils content with interdisciplinary systems taught through scientific practices. After completing their Kits, students present them to the class for review and final summative assessments.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
The concepts of forward modeling and inverse modeling Provenance: Lee Slater, Rutgers …
The concepts of forward modeling and inverse modeling
Provenance: Lee Slater, Rutgers University-Newark Reuse: If you wish to use this item outside this site in ways that exceed fair use (see http://fairuse.stanford.edu/) you must seek permission from its creator. This unit introduces the student to the concept of geophysical inversion, which is the process of estimating the geophysical properties of the subsurface from the geophysical observations. The basic mechanics of the inversion process used to estimate spatial variations in electrical conductivity from electrical imaging (EI) datasets are introduced in a way that avoids the heavy mathematics. The challenges of inverting two dimensional geophysical datasets and the strategies for limiting the inversion to geologically reasonable solutions are described. The unfortunate characteristics of geophysical images (blurriness, imaging artifacts) are explained to highlight the limitations of inversion and to emphasize that the inverted images never match with geological reality. Students use the Excel-based Scenario Evaluator for Electrical Resistivity (SEER) tool introduced in Unit 3, Field Geophysical Measurements, to investigate key inversion concepts associated with measurement errors and the benefits of adding boreholes to surface data using synthetic datasets. Students are then led through an inversion of the two-dimensional EI dataset acquired in Harrier Meadow using ResIPy, a Python-based graphical user interface developed for instructional use. Following the instructional video, students then perform the inversion in ResIPy themselves and explore how variations in inversion settings related to the errors in the measurements result in distinctly different images.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this unit, students explore water privatization and freshwater access issues within …
In this unit, students explore water privatization and freshwater access issues within the geophysical and cultural context of Cochabamba, Bolivia. Students identify topographical features that create rain shadows and their relationship to the water cycle. As they discuss several alternative models for supplying water to the residents of Cochabamba, they link concepts of environmental justice to the Cochabamba Water Wars of 2000.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students are introduced to evapotranspiration (ET) and how ET varies with meteorological …
Students are introduced to evapotranspiration (ET) and how ET varies with meteorological factors and plant factors. A pre-class video and worksheet introduce students to estimating landscape water needs from ET and precipitation data. In class, students design low water-use landscaping and calculate the water savings of water-efficient landscaping compared with turf grass.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
The California Drought of 2012 -- 2016 had significant social and economic …
The California Drought of 2012 -- 2016 had significant social and economic consequences. This final unit focuses on this drought as a case study for measuring the hydrologic system so that we can better understand fluxes, variability, uncertainties, and methods to measure them. Students analyze a variety of data that are relevant to basin-scale water budget: precipitation, terrestrial water storage, and snow pack. Traditional monitoring systems used are precipitation and snow pillow sensors. The newer geodetic methods are GRACE (Gravity Recovery and Climate Experiment satellite) and Reflection GPS. The students then use these data to consider water storage changes during the drought and how these changes compare in magnitude to human consumption. The work can start during a lab period and carry over into work outside of the lab time. The student exercise takes the form of responses to questions and tasks that tests a student's abilities to synthesize information and identify challenges in monitoring the terrestrial water cycle. Students then take the step-by-step exercise results and synthesize it into a report for California water policy makers to highlight the findings and pro/cons/uncertainties for the different methods. Unit 4 is the summative assessment for the module.
Show more information on GPS versus GNSS Hide Note: Although the term GPS (Global Positioning System) is more commonly used in everyday language, it officially refers only to the USA's constellation of satellites. GNSS (Global Navigation Satellite System) is a universal term that refers to all satellite navigation systems including those from the USA (GPS), Russia (GLONASS), European Union (Galileo), China (BeiDou), and others. In this module, we use the term GPS even though, technically, some of the data may be coming from satellites in other systems.
Show more about Online Teaching suggestions Hide Online-ready: The exercise is electronic and could be done individually or in small online groups. Lecture is best done synchronously due to the technical nature.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students explore water quality and freshwater access issues around the globe. The …
Students explore water quality and freshwater access issues around the globe. The activities require students to investigate region-specific water problems in different parts of the world and analyze how those issues are sometimes remedied. The materials in this unit may be used as a stand-alone day of instruction or as part of the complete Environmental Justice and Freshwater Resources InTeGrate Module.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This is the second module of a two week-long unit on hydrology …
This is the second module of a two week-long unit on hydrology in an upper-level undergraduate course on the Critical Zone. After Unit 5.1, students should have a basic understanding of the fluxes and reservoirs in the context of a tree and basin water balance. In Unit 5.2, students will learn how to apply environmental sensor data to larger catchment or regional scales (Part 1) and will connect hydrologic processes in the Critical Zone to societal needs through a quantitative resource availability and decision-making exercise (Part 2).
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Unit 5 will delve more into an examination of food security using …
Unit 5 will delve more into an examination of food security using online ArcGIS. The class begins with a GIS-based exploration of data available for the three regions. The rest of the class period is provided for group work creating an action plan for a food insecurity issue teams have identified for their region. Students will utilize their maps from ArcGIS Online within their action plan. One component of the summative assessment, to be submitted in Unit 6, is a community-based action plan of how the selected community can increase food security and lessen vulnerability.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Unit 5 is a final exercise that can start during a lab …
Unit 5 is a final exercise that can start during a lab period and carry over into work outside of the lab time. The project report will test students' abilities to synthesize and apply knowledge related to LiDAR, InSAR, and infrastructure analysis learned in earlier units of the module. Data are provided for two potential case study sites for the final report -- El Major Cucapah Earthquake (Mexico 2010) and South Napa Earthquake (California 2014). Alternatively, the instructor or students can choose other sites to analyze. Unit 5, along with an exam question, is the summative assessment for the module. Students will be able to use the experience as a means of preparing for a final exam question on a related topic.
Show more about Online Teaching suggestions Hide Online-ready: The exercise is a final project that can be done remotely, individually or in small online groups.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This unit addresses changes in hurricane risks due to coastal development. Students …
This unit addresses changes in hurricane risks due to coastal development. Students will calculate the risks from hurricanes and how the hazards have changed (or not) from 1901 to 2010. Students will determine how changes in coastal development have altered the risks presented by hurricanes by analyzing data in Activity 5.1 and historic maps and aerial photographs in Activity 5.2.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Screenshot of the slider tool used to relate geophysical images to vegetation …
Screenshot of the slider tool used to relate geophysical images to vegetation pattern
Provenance: Lee Slater, Rutgers University-Newark Reuse: This item is in the public domain and maybe reused freely without restriction. In this unit, students explore spatial associations between the three-dimensional electromagnetic (EM) conductivity inversions and the visible patterns of Salicornia (Pickleweed) introduced in Unit 1, Exploring Harrier Meadow. The Arcview Storymap started in Unit 1 allows students to overlay inverted electrical conductivity patterns for different depths on aerial photographs of Harrier Meadow that highlight the patches of Pickleweed. Students analyze how conductivity patterns vary with depth and explore for evidence for a relationship between electrical conductivity and Pickleweed patches based on the hypothesis introduced in Unit 1. Students then perform an integrated interpretation of both the EM and electrical imaging inversions along with the results of direct sampling (coring, pore water sampling, soil characterization) conducted at locations selected using the electrical conductivity patterns observed in the EM dataset. Students perform basic qualitative assessments of the correlation between physical and chemical properties of the sampled soils and soil electrical conductivity from the EM inversions. Students finish the module by evaluating the extent to which the geophysical dataset and supporting direct measurements support the hypothesis pertaining to the cause of the Salicornia clusters introduced in Unit 1.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
empty (Note: this resource was added to OER Commons as part of …
empty
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students will examine data that record the modern increase in carbon dioxide …
Students will examine data that record the modern increase in carbon dioxide concentrations and the associated increase in average temperatures, and they will investigate the effects of carbon dioxide on various components of the Earth system (atmosphere, cryosphere, hydrosphere -- oceans). Students also learn how the burning of fossil fuels contributes to increases in atmospheric carbon dioxide.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.