In this episode of Crash Course History of Science, we travel to …
In this episode of Crash Course History of Science, we travel to the Americas to ask the question, "When are we?" and get some answers. We'll look at the Maya, Inca, and Olmec civilizations and how they recorded their science.
Short pieces of chenille stem arranged inside a box look like a …
Short pieces of chenille stem arranged inside a box look like a random jumble of line segments—until viewed in the proper perspective.
Note: This activity is detail oriented and time intensive. It’s done by threading a long length of fishing line through twenty small holes, and then attaching short pieces of chenille stem to create a suspended pattern. When you look through a viewing hole, that random-looking pattern resolves into the form of a chair. If you think being a watchmaker is something you’d hate, then you might want to rethink doing this Snack!
Did you know that the fishier a fish smells, the longer it’s …
Did you know that the fishier a fish smells, the longer it’s been out of the water? This is due to a chemical called trimethylamine, which is an amine, the class of organic compounds we’re discussing in this episode! Although they tend to be pretty stinky, amines are important in many fields like biochemistry, medicine, and agriculture. In this episode of Crash Course Organic Chemistry, we’ll explore amine formation and basicity, and revisit some old friends, imines and enamines!
The lesson begins with a demonstration introducing students to the force between …
The lesson begins with a demonstration introducing students to the force between two current carrying loops, comparing the attraction and repulsion between the loops to that between two magnets. After formal lecture on Ampere's law, students begin to use the concepts to calculate the magnetic field around a loop. This is applied to determine the magnetic field of a toroid, imagining a toroid as a looped solenoid.
Hans Christian Oersted had just discovered the connection between electricity and magnetism. …
Hans Christian Oersted had just discovered the connection between electricity and magnetism. Meanwhile, a French physicist named André-Marie Ampère was experimenting with some wires, trying to learn more about the connection between currents and the magnetic fields they create. Ampère would discover one of the most fundamental laws of electromagnetism: what we now call Ampère’s Law.
Students design, build and test model roller coasters using foam tubing. The …
Students design, build and test model roller coasters using foam tubing. The design process integrates energy concepts as they test and evaluate designs that address the task as an engineer would. The goal is for students to understand the basics of engineering design associated with kinetic and potential energy to build an optimal roller coaster. The marble starts with potential energy that is converted to kinetic energy as it moves along the track. The diameter of the loops that the marble traverses without falling out depends on the kinetic energy obtained by the marble.
This problem illustrates how numerical theories are developed, how we might test …
This problem illustrates how numerical theories are developed, how we might test this theory with an analog model, and how numerical models are constructed and the limitations of numerical modeling.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This lesson follows the NGSS standards for reviewing analog and digital waves. …
This lesson follows the NGSS standards for reviewing analog and digital waves. Students will be able to review the differences and similarities of analog and digital waves. Students will also be able to review how signals sent as analog or digital waves are used.
This lesson follows the NGSS standards for reviewing analog and digital waves. …
This lesson follows the NGSS standards for reviewing analog and digital waves. Students will be able to review the differences and similarities of analog and digital waves. Students will also be able to review how signals sent as analog or digital waves are used.
This lab activity is designed for science students in an introductory climatology …
This lab activity is designed for science students in an introductory climatology course. Upon successful completion of the activity, students will have demonstrated an ability to:
Independently navigate and download climate data from online data libraries. Work with different file types (NetCDF and CSV). Write appropriate MATLAB code to read and manipulate climate data, and create plots (time series and maps) as instructed. Extract meaningful information from large 3-dimensional datasets. Understand and apply fundamental climatology concepts, such as:
Climate statistics (temporal and spatial mean and anomaly; trends; baselines) Ice-albedo feedback resulting in disproportionate sensitivity to climate change in polar regions
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this activity students examine groundwater flow path based on hydraulic head …
In this activity students examine groundwater flow path based on hydraulic head data/ potentiometric surface and spatial variation of groundwater chemistry. Students analyze the data using AquaChem and Phreeqc which is integrated with AquaChem
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Sidewalks provide a good analog for the study of fractures when outcrops …
Sidewalks provide a good analog for the study of fractures when outcrops are not available. This exercise is taught as the first lab of the semester in an undergraduate structural geology course. Students learn to make systematic observations, measure the orientation and location of fractures, manipulate and analyze data, and consider some kinematic and dynamic questions regarding the origin and significance of fractures. Their experiences are also used later in the course to reinforce key concepts of brittle deformation. Done as a group project, it emphasizes the importance of group work and encourages students to propose and defend their ideas.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this project, much of the learning responsibility is placed on the …
In this project, much of the learning responsibility is placed on the individual students within the project team, and also on the team acting as a cooperative unit. Students will be provided with some basic background and will have some avenues to investigate and present as a team (polar vs. nonpolar compounds and surface area, hydrophilicity vs. hydrophobicity, the history of mass spectroscopy, the advantages and disadvantages of longitudinal studies, the specialization of scientific fields, and the importance of collaboration between experts in different scientific fields.
Analytical chemistry spans nearly all areas of chemistry but involves the development …
Analytical chemistry spans nearly all areas of chemistry but involves the development of tools and methods to measure physical properties of substances and apply those techniques to the identification of their presence (qualitative analysis) and quantify the amount present (quantitative analysis) of species in a wide variety of settings.
As currently taught in the United States, introductory courses in analytical chemistryemphasize …
As currently taught in the United States, introductory courses in analytical chemistryemphasize quantitative (and sometimes qualitative) methods of analysis along with a heavydose of equilibrium chemistry. Analytical chemistry, however, is much more than a collection ofanalytical methods and an understanding of equilibrium chemistry; it is an approach to solvingchemical problems. Although equilibrium chemistry and analytical methods are important, theircoverage should not come at the expense of other equally important topics.
The introductory course in analytical chemistry is the ideal place in the undergraduate chemistry curriculum forexploring topics such as experimental design, sampling, calibration strategies, standardization,optimization, statistics, and the validation of experimental results. Analytical methods comeand go, but best practices for designing and validating analytical methods are universal. Becausechemistry is an experimental science it is essential that all chemistry students understand theimportance of making good measurements.
My goal in preparing this textbook is to find a more appropriate balance between theoryand practice, between “classical” and “modern” analytical methods, between analyzing samplesand collecting samples and preparing them for analysis, and between analytical methods anddata analysis. There is more material here than anyone can cover in one semester; it is myhope that the diversity of topics will meet the needs of different instructors, while, perhaps,suggesting some new topics to cover.
Long Description: Located at https://courses.lumenlearning.com/labmethods/ Word Count: 9849 (Note: This resource's metadata …
Long Description: Located at https://courses.lumenlearning.com/labmethods/
Word Count: 9849
(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)
Long Description: Located at https://courses.lumenlearning.com/labmethods/ Word Count: 13827 (Note: This resource's metadata …
Long Description: Located at https://courses.lumenlearning.com/labmethods/
Word Count: 13827
(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.