In this activity, students develop an understanding of the relationship between natural …
In this activity, students develop an understanding of the relationship between natural phenomena, weather, and climate change: the study known as phenology. In addition, they learn how cultural events are tied to the timing of seasonal events. Students brainstorm annual natural phenomena that are tied to seasonal weather changes. Next, they receive information regarding the Japanese springtime festival of Hanami, celebrating the appearance of cherry blossoms. Students plot and interpret average bloom date data from over the past 1100 years.
Unit 1 covers the introduction and about the drawings I have my …
Unit 1 covers the introduction and about the drawings I have my student do before introducing blueprint reading. Since I only have a short time to cover blueprint this gives them a little better understanding of what blueprints are and how they are used. Unit 2 is a short video covering basic concepts of blueprint reading, Unit 3 can be used for lectures over blueprinting. It uses the website WikiHow and it has three parts with several sections in each. It has diagram included with each section, It also explains various places one can learn more about blueprint reading,
Storms can have devastating impacts on coastal communities. Typically, tropical storms like …
Storms can have devastating impacts on coastal communities. Typically, tropical storms like hurricanes get the most attention, but there are other types of storms that occur at more northern latitudes that can be just as destructive. For example, in January of 2018, Winter Storm Grayson caused more than 300,000 power outages and $1.1 billion in damage, and resulted in 22 confirmed casualties along the eastern seaboard. In this module, students will learn how barometric pressure changes during a storm, analyze the effect of storms on oceanographic variables, classify a storm as a bomb cyclone, and compare a bomb cyclone to a hurricane. Ultimately students will use their quantitative reasoning skills to manipulate and visualize data during storms in the northeastern United States.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Question Suppose that you are building a new house. It will take …
Question Suppose that you are building a new house. It will take about 90 kg (198 pounds) of copper to do the electrical wiring. In order to get the copper in the first place, someone needs to mine solid rock that contains copper, extract the copper minerals, throw away the waste rock, and smelt the copper minerals to produce copper metal. Rocks mined for copper typically contain only very small percentages of copper -- about 0.7% in the case of most of the big porphyry copper deposits of the world. How much rock would someone have to mine in order to extract enough copper to wire your new house?
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This lesson discusses the result of a charge being subject to both …
This lesson discusses the result of a charge being subject to both electric and magnetic fields at the same time. It covers the Hall effect, velocity selector, and the charge to mass ratio. Given several sample problems, students learn to calculate the Hall Voltage dependent upon the width of the plate, the drift velocity, and the strength of the magnetic field. Then students learn to calculate the velocity selector, represented by the ratio of the magnitude of the fields assuming the strength of each field is known. Finally, students proceed through a series of calculations to arrive at the charge to mass ratio. A homework set is included as an evaluation of student progress.
In the activity students learn about the properties of solutions, acidity and …
In the activity students learn about the properties of solutions, acidity and pH, electrolytes versus non-electrolytes, and solution concentration. Hopefully, this activity will also dispel common misconceptions about tap water and bottled beverages.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This is a series of presentations and activities that are designed to …
This is a series of presentations and activities that are designed to introduce students to Cognitive Development. I have had success doing one of these every now and then as part of a history class. Also, I have taught units on Child Development and Education where I used them all within the context of the same unit. I like the spreading of these lessons throughtout the year in a high school setting, where students can sort of see it as a continuing series of interesting topics that break up the normal flow of learning.
This course explores the problem of intelligence—its nature, how it is produced …
This course explores the problem of intelligence—its nature, how it is produced by the brain and how it could be replicated in machines—using an approach that integrates cognitive science, which studies the mind; neuroscience, which studies the brain; and computer science and artificial intelligence, which study the computations needed to develop intelligent machines. Materials are drawn from the Brains, Minds and Machines Summer Course offered annually at the Marine Biological Laboratory in Woods Hole, MA, taught by faculty affiliated with the Center for Brains, Minds and Machines headquartered at MIT. Elements of the summer course are integrated into the MIT course, 9.523 Aspects of a Computational Theory of Intelligence. Contributors This course includes the contributions of many instructors, guest speakers, and a team of iCub researchers. See the complete list of contributors.
Utopia or dystopia? It’s up to us. In the 21st century, powerful …
Utopia or dystopia? It’s up to us. In the 21st century, powerful technologies have been appearing at a breathtaking pace—related to the internet, artificial intelligence, genetic engineering, and more. They have amazing potential upsides, but we can’t ignore the serious risks that come with them. Brave New Planet is a podcast that delves deep into the most exciting and challenging scientific frontiers, helping us understand them and grapple with their implications. Dr. Eric Lander, president and founding director of the Broad Institute of MIT and Harvard, is a geneticist, molecular biologist, and mathematician who was a leader of the Human Genome Project and for eight years served as a science advisor to the White House for President Obama. He’s also the host of Brave New Planet, and he’s talked to leading researchers, journalists, doctors, policy makers, activists, and legal experts to illuminate how this generation’s choices will shape the future as never before. Brave New Planet is a partnership between the Broad Institute, Pushkin Industries, and the Boston Globe.
Nothing changed movies like the arrival of synchronous sound. NOTHING! Acting, directing, …
Nothing changed movies like the arrival of synchronous sound. NOTHING! Acting, directing, cinematography, and presentation all had to be rethought. Some studios were more quick to take on the challenge while others waited until the last moment. Some actors made graceful transitions while others struggled with the new format. But this was the big turning point and a major completion point to what movies would ultimately become.
In the world in which we live, individuals are faced with technological …
In the world in which we live, individuals are faced with technological challenges that were perhaps never anticipated or envisioned. Forty years ago, no one could have anticipated the challenges and opportunities that cell phones bring, let alone text messaging. At times, we are faced with design challenges that require us to think “outside the box” and use creative design processes rather than relying on just one possible solution. Specifically, structures are designed with a particular purpose, environment, life span, and culture in mind. Engineers must weigh these factors to produce optimal designs.
Engineering and designers regularly keep a design journal. Documentation of design thinking strategies, through sketches, notes, and diagrams, is an important aspect of the creation of an engineering design journal.
To manage their businesses successfully, farmers and food production companies need to …
To manage their businesses successfully, farmers and food production companies need to know what crops are in the ground and how well they are growing. A pair of easy-to-use online mapping tools provides this information for growing seasons in the past and present.
In this activity, students conduct a short hands-on demonstration that simulates ocean …
In this activity, students conduct a short hands-on demonstration that simulates ocean acidification resulting from excess atmospheric carbon dioxide and discuss potential implications of increases in ocean temperatures and acidification due to climate change.
Curious about what a day in the life looks like for some …
Curious about what a day in the life looks like for some of the most in-demand construction careers? Not sure where to get started or the career options available to you?
Join Build Your Future Arizona on February 25th, 10 a.m. MST for our live event! This event will open your eyes to the possibilities in construction careers and will include:
Interactive quizzes Surprise giveaways LIVE panelists Not only will you have the chance to hear from people working in the industry, but we will also explore how you can “drive the first nail” into your career path and get started in construction.
Discover what it means to start a career in the skilled crafts profession, learn how you can leverage the current resources available to you, and start constructing your path to success!
Students create projects that introduce them to Arduino—a small device that can …
Students create projects that introduce them to Arduino—a small device that can be easily programmed to control and monitor a variety of external devices like LEDs and sensors. First they learn a few simple programming structures and commands to blink LEDs. Then they are given three challenges—to modify an LED blinking rate until it cannot be seen, to replicate a heartbeat pattern and to send Morse code messages. This activity prepares students to create more involved multiple-LED patterns in the Part 2 companion activity.
In the companion activity, students experimented with Arduino programming to blink a …
In the companion activity, students experimented with Arduino programming to blink a single LED. During this activity, students build on that experience as they learn about breadboards and how to hook up multiple LEDs and control them individually so that they can complete a variety of challenges to create fun patterns! To conclude, students apply the knowledge they have gained to create LED-based light sculptures.
Are you interested in building and testing your own imaging radar system? …
Are you interested in building and testing your own imaging radar system? MIT Lincoln Laboratory offers this 3-week course in the design, fabrication, and test of a laptop-based radar sensor capable of measuring Doppler, range, and forming synthetic aperture radar (SAR) images. You do not have to be a radar engineer but it helps if you are interested in any of the following; electronics, amateur radio, physics, or electromagnetics. It is recommended that you have some familiarity with MATLAB®. Teams of three students will receive a radar kit and will attend a total of 5 sessions spanning topics from the fundamentals of radar to SAR imaging. Experiments will be performed each week as the radar kit is implemented. You will bring your radar kit into the field and perform additional experiments such as measuring the speed of passing cars or plotting the range of moving targets. A final SAR imaging contest will test your ability to form a SAR image of a target scene of your choice from around campus; the most detailed and most creative image wins. Acknowledgement and Disclaimer This work is sponsored by the Department of the Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.