The faculty resource guide provides details on the content, teaching strategies, and …
The faculty resource guide provides details on the content, teaching strategies, and recommendations for the use of the Quantitative Reasoning collection for your course.
The collection was compiled by a team of subject area experts, an instructional designer and a librarian with expertise in Open Educational Resources. The collection includes student learning outcomes used to design the Quantitative Reasoning course content collection and seven learning modules aligned with those outcomes: Quantity and Proportion, Analysis of Growth, Voting Theory, Financial Literacy, Descriptive Analysis-Collecting Data, Descriptive Analysis-Describing Data, and Probability. The modules contain instructional materials, resources, and assessments further aligned with the outcomes. In addition to the information you find here in the Implementation Guide, you will find additional explanations and suggestions within individual modules and alongside specific artifacts.
Quantitative Reasoning course collection video from the UNC System OER project. This …
Quantitative Reasoning course collection video from the UNC System OER project. This one-and-a-half-minute video is meant for students. It focuses on what students may think they know about the topic, what students could learn from taking the course, and a brief introduction to open educational resources.
PowerPoint module leading students through creation and manipulation of spreadsheet to forward …
PowerPoint module leading students through creation and manipulation of spreadsheet to forward model an example of exponential decay -- the number of remaining unpopped kernels of popcorn in a bag of popping popcorn.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Christina StringerâUniversity of South Florida, Tampa FL 33620
This activity was developed for Spreadsheets Across the Curriculum. National Science Foundation, DUE 0442629.
In this activity, students focus on ecosystem services specifically related to the …
In this activity, students focus on ecosystem services specifically related to the hydrologic cycle. Using rainfall-runoff data for a small watershed in Ohio, students are introduced to the technical vocabulary associated with watersheds, watershed hydrology, and water balance. Working with hydrologic data will enable the students to test their understanding of watershed hydrology and the water balance equation, which is a measure of how much water is stored within different parts of the watershed.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this activity, students examine the impact of land use on runoff. …
In this activity, students examine the impact of land use on runoff. Using rainfall-runoff data for two small watersheds in Ohio, one dominated by agricultural land uses and the other dominated by urban land uses, students evaluate natural and human factors that impact watershed hydrology and water balance, and generate potential provisioning and regulating services provided by natural ecosystems within watersheds.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this unit, students will be introduced to different data types used …
In this unit, students will be introduced to different data types used in the geosciences and other disciplines to understand environmental problems. The instructor will discuss the difference between qualitative and quantitative. Then, students will be given data sets related to water in Phoenix, Arizona. Students will work in groups of two to five to categorize different data sets as qualitative or quantitative and to reflect on their emotive responses to different data. The session ends with a discussion about the potential uses of these various data sets in decision-making around water in Phoenix, and uses this to foster a discussion about the ways in which different data sources lend insight into complex system problems.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This unit is designed to engage students by introducing them to patterns …
This unit is designed to engage students by introducing them to patterns in recent climate and investigating possible reasons for recent changes. Students work in small groups to plot and analyze real-world temperature data covering a decade, and use that information to make predictions about future climatic trends. Whole-class discussions illustrate the differences between short- and long-term trends. Students also analyze graphs of solar irradiance to begin to determine reasons for the observed increase in temperature, setting the stage for Unit 2, which examines the role of the atmosphere in controlling Earth's surface temperature.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students will conduct a virtual exploration of Harrier Meadow, a saltmarsh in …
Students will conduct a virtual exploration of Harrier Meadow, a saltmarsh in the New Jersey Meadowlands. They will identify its vulnerability to pollution, its tidal connection to the Hackensack Estuary and the Atlantic Ocean along with its proximity to New York City. Vegetation patterns within this wetland will be explored, focusing on a salinity tolerant native plant (Pickleweed) that is returning to the marsh. The return of such native species is critically important to wetland restoration efforts that aim to reclaim native habitat following decades of environmental degradation since the industrial revolution. These vegetation patterns are the focus of resistivity and electromagnetic surveys that the students explore in the subsequent units of this module. The geophysical surveys aim to better understand the underlying factors controlling the distribution of Pickleweed. By understanding where the Pickleweed is thriving, restoration efforts could subsequently be improved by locating regions of such wetlands with similar underlying factors where Pickleweed (and other native plants) could be successfully reintroduced. In the first unit of this module, students will use Google Earth (on the web), high-resolution video acquired from an Unmanned Aerial Vehicle (UAV) and an ArcGIS Storymap in their exploration. Primary outcome: students comprehend the association between salinity and Pickleweed and formulate plans to test a hypothesis for Pickleweed persistence/patterning in Harrier Meadow that will ultimately be implemented using near surface geophysical methods in the remaining units of the module.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
How does water move throughout the Earth system? How do scientists measure …
How does water move throughout the Earth system? How do scientists measure the amount of water that moves through these pathways? This unit provides an alternative way for students to learn the major components of Earth's water cycle, which includes actively thinking about how we measure the water system. In this unit, students annotate a schematic diagram to identify the major reservoirs and fluxes in the hydrosphere. They also work in teams of different "experts" to identify traditional and geodetic techniques that are used to measure components of the hydrosphere and the changes over time. Using their recently acquired knowledge about these techniques, they make inferences about which methods are best for measuring different components of the hydrosphere. Measurement methods include stream gauges, groundwater wells, snow pillows, vertical GPS changes, reflection GPS for snow depth, and GRACE satellite (Gravity Recovery and Climate Experiment).
Show more about Online Teaching suggestions Hide Online-adaptable: Main exercise is a jigsawactivity that could be done in an online course but student groups with online collaboration (probably synchronous) would need to be organized OR the exercise would need to be adapted away from group format.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Unit 1 introduces foundational concepts in geoscience, emergency management, and political science …
Unit 1 introduces foundational concepts in geoscience, emergency management, and political science that are critical for developing a systems thinking approach and for achieving the learning objectives in the storm module. More specifically, within Unit 1, students acquire a vocabulary related to storm systems and risk, engage in practical exercises on event probability and frequency, and complete written activities and oral presentations that reinforce these concepts, using their own community and two case studies as examples. The activities include: a pre-and post-Unit survey on natural hazard risk, an optional concept map exercise to identify associations of risk in major storms, an exercise on probability and frequency of natural hazards in general and major storms in particular, an exercise using hazard vulnerability analysis (HVA) and the HVA's findings, and a synthesis assignment that requires analysis of an assigned hazard mitigation plan (HMP) and development of a proposal to improve mitigation plans.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This unit uses scientific data to quantify the geologic hazard that earthquakes …
This unit uses scientific data to quantify the geologic hazard that earthquakes represent along transform plate boundaries. Students will document the characteristics of the Pacific/North American plate boundary in California, analyze information about historic earthquakes, calculate probabilities for earthquakes in the Los Angeles and San Francisco areas, and assess the regional earthquake probability map.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This introductory unit is designed to provide stand-alone introduction to geophysical imaging …
This introductory unit is designed to provide stand-alone introduction to geophysical imaging of the shallow subsurface, motivate students to become invested in the topic, provide career context for these scientific subjects, and build enthusiasm for the following units. The shallow seismic refraction module (Measuring Depth to Bedrock using Seismic Refraction) is designed to fill the need to expose students to geophysical concepts and surrounding earth science principles so that students begin to know why geophysics is important to geoscience and how these concepts are related to future careers and day-to-day life.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this unit, students will identify mass extinctions as paleontologists have done …
In this unit, students will identify mass extinctions as paleontologists have done and recognize and understand the "pull of the recent," that is, the human tendency to know more about events closer to the present. Students prepare by reading an article prior to class that describes mass extinctions. At the beginning of class, students place historical events along a physical model of the geologic timescale. Next, they examine a diagram showing changes in biodiversity across the last 542 million years and identify patterns in those data. Students and the instructor then finish class by discussing that although fossils (and rocks) are critical for explaining the present and predicting the future, their mechanisms of preservation biases our understanding of Earth's past.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This unit introduces the hydrological cycle to provide context for the module …
This unit introduces the hydrological cycle to provide context for the module as a whole. It particularly focuses on those portions of the hydrological cycle that take place on land and that form the basis for water that is used by society. Students conduct a stakeholder analysis to better understand societal issues around water. Then the scientific exercise of the unit emphasizes quantitative approaches to describing the critical portions that humans have access to: surface water and shallow ground water. Students calculate residence times and fluxes between reservoirs and track water particles on an annual basis. They also explore available data sets for specific reservoirs such as snowpack and rivers.
Show more about Online Teaching suggestions Hide Online-adaptable: This exercise could be converted to online whole-class discussions/lectures and a breakout group activity. Would be best done synchronously.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Unit 1 serves as an introduction to Earth's climate system components. After …
Unit 1 serves as an introduction to Earth's climate system components. After exploring climate data, students are introduced to the natural processes responsible for global climate and how specific variables are interpreted by scientists.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This unit introduces students to Structure from Motion (SfM). SfM is a …
This unit introduces students to Structure from Motion (SfM). SfM is a photogrammetric technique that uses overlapping images to construct a 3D model of the scene and has widespread research applications in geodesy, geomorphology, structural geology, and other subfields of geology. SfM can be collected from a hand-held camera or an airborne platform such as an aircraft, tethered balloon, kite, or UAS (unmanned aerial system). After an introduction to the basics of SfM, students will design and conduct their own survey of a geologic feature, followed by an optional (but highly encouraged) introductory exploration of SfM data after returning from the field.
Show more about Online Teaching suggestions Hide Online teaching: This unit was adapted to an online remote field teaching activity. Getting started with Structure from Motion (SfM) photogrammetry (remote field collection).
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Field experience using geodetic and geophysical tools provides a unique opportunity for …
Field experience using geodetic and geophysical tools provides a unique opportunity for upper-level undergraduates to learn research skills applicable to their future graduate research or career path. This unit introduces students to terrestrial laser scanning (TLS), a ground-based, remote-sensing tool that generates three-dimensional point clouds, that has widespread research applications in geodesy, geomorphology, structural geology, and other subfields of geology. After an introduction to the basics of TLS, students will design and conduct their own survey of a geologic feature, followed by an optional introductory exploration of TLS data after returning from the field.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this three to four class unit, students will: Assess the case …
In this three to four class unit, students will:
Assess the case for a global water crisis and its relevance in America. Expand their understanding of sustainability as a contestable concept and movement. Consider water resource-management objectives through the lens of sustainability. Analyze region-specific examples of unsustainable use of water for agriculture.
This is largely achieved via student discussion and evaluation of texts and statistics provided to them. The text and statistics are derived from a variety of disciplines, mostly not from the geosciences. As such, the unit is very interdisciplinary, requiring students to synthesize disparate information and take a holistic perspective on water issues.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This unit will introduce methods and data from Critical Zone observatories as …
This unit will introduce methods and data from Critical Zone observatories as well as methods that scientists use in their research. These activities will provide an introduction to methods used in later units and help students develop a research proposal for the summative assessment activity. In this unit, students will be introduced to basic scientific methods such as:
How to create an effective annotated bibliography. How to use software such as MS Excel to graph, analyze, and interpret data.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This unit offers an alternative application for high-resolution topographic data from an …
This unit offers an alternative application for high-resolution topographic data from an outcrop. Using engineering geology methods and data collection from TLS and/or SfM, students design safe "road cuts" with low probability of failure for a proposed fictitious roadway along the side of a hill. Cut slopes or "road cuts" are constructed slopes along roadways in mountainous regions. The design of such slopes requires a safe slope angle, rockfall catchment ditch, and drainage provision. The decision of the slope angle is based on kinematic analysis for slope failures due to the orientation of discontinuities (bedding planes, joints, etc.) with respect to that of the proposed slope. Traditionally, discontinuity orientation data are collected from measurements directly on the outcrop. This can be dangerous and the accessible sites may not be fully representative of the cut as a whole. Remote methods such as TLS and SfM generate 3D models from which discontinuity data can be collected safely. In this unit students learn the workflow for designing safe cut slopes using discontinuity data collected from direct field observations and TLS or SfM and compare the methods and results.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.