This course covers the fundamentals of astrodynamics, focusing on the two-body orbital …
This course covers the fundamentals of astrodynamics, focusing on the two-body orbital initial-value and boundary-value problems with applications to space vehicle navigation and guidance for lunar and planetary missions, including both powered flight and midcourse maneuvers. Other topics include celestial mechanics, Kepler’s problem, Lambert’s problem, orbit determination, multi-body methods, mission planning, and recursive algorithms for space navigation. Selected applications from the Apollo, Space Shuttle, and Mars exploration programs are also discussed.
This script for choral reading was written to be used with two …
This script for choral reading was written to be used with two groups of students. The script is based on the Feature Story, At Home in the Cold and discusses various adaptations that allow animals to survive in the cold oceans of the Arctic and Antarctica. The script is appropriate for use with students in grades K-1.
This informational text explores adaptations that allow penguins, whales, walruses, seals, and …
This informational text explores adaptations that allow penguins, whales, walruses, seals, and fish to live in the cold water of the Arctic and Southern Oceans. The text is at reading level appropriate for students in Kindergarten through first grade. It is a PDF file that contains the text as well as a glossary.
This hands-on workshop explores the tool Atelier that was developed to support …
This hands-on workshop explores the tool Atelier that was developed to support feedback in programming tutorials. Our teaching philosophy for programming is based on a tinkering approach, that is characterised by playful exploration, driven by curiosity. Students define from the start their own assignments, given only a set of ingredients to use. The role of a teacher is to provide starting points, explain the first steps to take, and to get students unstuck when necessary. This approach puts students in a very active position but is also very feedback intensive.To support giving feedback and to reduce inconsistencies in feedback given by teaching assistants (TAs), we developed a tool, Atelier, that allows to give comments on code and share this with the respective student, and also with TAs and teachers.The hands-on activity will start with an introduction, followed by an online tutorial lecture with some simple programming assignments. Participants will take the role of students as well as TAs and use Atelier to give and receive feedback. After two rounds of programming exercises, we will evaluate the tool with the participants and discuss its use and place in programming education.
O recurso é uma ficha de trabalho, atividade para os alunos resolverem …
O recurso é uma ficha de trabalho, atividade para os alunos resolverem em contexto de sala de aula. Também pode ser usado para avaliar os conhecimenyos adquiridos ao longo de um módulo de corrente continua, eletricidade no nível inicial do curso.
This undergraduate class is designed to introduce students to the physics that …
This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet. Acknowledgments Prof. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall.
This undergraduate class is designed to introduce students to the physics that …
This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet. Acknowledgments Prof. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall.
The numerical methods, formulation and parameterizations used in models of the circulation …
The numerical methods, formulation and parameterizations used in models of the circulation of the atmosphere and ocean will be described in detail. Widely used numerical methods will be the focus but we will also review emerging concepts and new methods. The numerics underlying a hierarchy of models will be discussed, ranging from simple GFD models to the high-end GCMs. In the context of ocean GCMs, we will describe parameterization of geostrophic eddies, mixing and the surface and bottom boundary layers. In the atmosphere, we will review parameterizations of convection and large scale condensation, the planetary boundary layer and radiative transfer.
This course uses the theory and application of atomistic computer simulations to …
This course uses the theory and application of atomistic computer simulations to model, understand, and predict the properties of real materials. Specific topics include: energy models from classical potentials to first-principles approaches; density functional theory and the total-energy pseudopotential method; errors and accuracy of quantitative predictions: thermodynamic ensembles, Monte Carlo sampling and molecular dynamics simulations; free energy and phase transitions; fluctuations and transport properties; and coarse-graining approaches and mesoscale models. The course employs case studies from industrial applications of advanced materials to nanotechnology. Several laboratories will give students direct experience with simulations of classical force fields, electronic-structure approaches, molecular dynamics, and Monte Carlo. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5107 (Atomistic Computer Modeling of Materials). Acknowledgements Support for this course has come from the National Science Foundation’s Division of Materials Research (grant DMR-0304019) and from the Singapore-MIT Alliance.
In this activity, students will explore how the Law of Conservation of …
In this activity, students will explore how the Law of Conservation of Energy (the First Law of Thermodynamics) applies to atoms, as well as the implications of heating or cooling a system. This activity focuses on potential energy and kinetic energy as well as energy conservation. The goal is to apply what is learned to both our human scale world and the world of atoms and molecules.
In this lesson, the students will discover the relationship between an object's …
In this lesson, the students will discover the relationship between an object's mass and the amount of space it takes up (its volume). The students will also learn about the concepts of displacement and density.
In this simulation of a doctor's office, students play the roles of …
In this simulation of a doctor's office, students play the roles of physician, nurse, patients, and time-keeper, with the objective to improve the patient waiting time. They collect and graph data as part of their analysis. This serves as a hands-on example of using engineering principles and engineering design approaches (such as models and simulations) to research, analyze, test and improve processes.
In this lesson, students are introduced to audio engineers. They discover in …
In this lesson, students are introduced to audio engineers. They discover in what type of an environment audio engineers work and exactly what they do on a day-to-day basis. Students come to realize that audio engineers help produce their favorite music and movies.
This course illuminates current theories about autism together with challenges faced by …
This course illuminates current theories about autism together with challenges faced by people on the autism spectrum. Theories in communicating, interacting socially, managing cognitive and affective overload, and achieving independent lifestyles are covered. In parallel, the course presents state-of-the-art technologies being developed for helping improve both theoretical understanding and practical outcomes. Participants are expected to meet and interact with people on the autism spectrum. Weekly reading, discussion, and a term project are required.
This eBook contains self-paced learning modules that were written as a tool …
This eBook contains self-paced learning modules that were written as a tool to guide and teach you to master Inventor. No two students learn at the same pace, therefore, the modules were written as competency-based bite-size pieces to allow you to work at your own pace. They can be used in correspondence courses, online courses, instructor-lead classes or by individuals teaching themselves to use Inventor in their own home or office.
This course provides a challenging introduction to some of the central ideas …
This course provides a challenging introduction to some of the central ideas of theoretical computer science. Beginning in antiquity, the course will progress through finite automata, circuits and decision trees, Turing machines and computability, efficient algorithms and reducibility, the P versus NP problem, NP-completeness, the power of randomness, cryptography and one-way functions, computational learning theory, and quantum computing. It examines the classes of problems that can and cannot be solved by various kinds of machines. It tries to explain the key differences between computational models that affect their power.
The engineering design process involves many steps. Not only must an engineer …
The engineering design process involves many steps. Not only must an engineer be able to devise a solution to a problem, he or she must also be ready to test and evaluate that solution to reach the best result. To successfully complete the design process, an engineer must be able to identify design flaws and learn from his or her mistakes. In this video segment adapted from ZOOM, learn about the design process as cast members create automatic door openers that enable them to open their bedroom doors while lying on their beds. For grades 3-8.
Students learn more about assistive devices, specifically biomedical engineering applied to computer …
Students learn more about assistive devices, specifically biomedical engineering applied to computer engineering concepts, with an engineering challenge to create an automatic floor cleaner computer program. Following the steps of the design process, they design computer programs and test them by programming a simulated robot vacuum cleaner (a LEGO® robot) to move in designated patterns. Successful programs meet all the design requirements.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.