Updating search results...

Search Resources

347 Results

View
Selected filters:
Public Health Ethics: Global Cases, Practice, and Context
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Introducing public health ethics poses two special challenges. First, it is a relatively new field that combines public health and practical ethics. Its unfamiliarity requires considerable explanation, yet its scope and emergent qualities make delineation difficult. Moreover, while the early development of public health ethics occurred in a western context, its reach, like public health itself, has become global. A second challenge, then, is to articulate an approach specific enough to provide clear guidance yet sufficiently flexible and encompassing to adapt to global contexts. Broadly speaking, public health ethics helps guide practical decisions affecting population or community health based on scientific evidence and in accordance with accepted values and standards of right and wrong. In these ways, public health ethics builds on its parent disciplines of public health and ethics. This dual inheritance plays out in the definition the U.S. Centers for Disease Control and Prevention (CDC) offers of public health ethics: “A systematic process to clarify, prioritize, and justify possible courses of public health action based on ethical principles, values and beliefs of stakeholders, and scientific and other information” (CDC 2011). Public health ethics shares with other fields of practical and professional ethics both the general theories of ethics and a common store of ethical principles, values, and beliefs. It differs from these other fields largely in the nature of challenges that public health officials typically encounter and in the ethical frameworks it employs to address these challenges. Frameworks provide methodical approaches or procedures that tailor general ethical theories, principles, values, and beliefs to the specific ethical challenges that arise in a particular field. Although no framework is definitive, many are useful, and some are especially effective in particular contexts. This chapter will conclude by setting forth a straightforward, stepwise ethics framework that provides a tool for analyzing the cases in this volume and, more importantly, one that public health practitioners have found useful in a range of contexts. For a public health practitioner, knowing how to employ an ethics framework to address a range of ethical challenges in public health—a know-how that depends on practice—is the ultimate take-home message.

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Textbook
Author:
Andreas Reis
Angus Dawson
Carla Saenz
Drue H. Barrett
Gail Bolan
Leonard W. Ortmann
Date Added:
01/01/2016
Puttin' It All Together
Read the Fine Print
Educational Use
Rating
0.0 stars

On the topic of energy related to motion, this summary lesson is intended to tie together the concepts introduced in the previous four lessons and show how the concepts are interconnected in everyday applications. A hands-on activity demonstrates this idea and reinforces students' math skills in calculating energy, momentum and frictional forces.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Denise W. Carlson
Malinda Schaefer Zarske
Date Added:
09/18/2014
Radio Systems Engineering, Revised First Edition
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Using a systems framework, this textbook provides a clear and comprehensive introduction to the performance, analysis, and design of radio systems for students and practicing engineers. Presented within a consistent framework, the first part of the book describes the fundamentals of the subject: propagation, noise, antennas, and modulation. The analysis and design of radios including RF circuit design and signal processing is covered in the second half of the book.

Key features
- Numerous examples within the text involve realistic analysis and design activities, and emphasize how practical experiences may differ from theory or taught procedures.
- RF circuit design and analysis is presented with minimal involvement of Smith charts, enabling students to more readily grasp the fundamentals.
- Both traditional and software-defined/direct sampling technology are described with pros and cons of each strategy explained.
- 517 pages. Licensed CC BY NC 4.0.

"This textbook gives engineering students a complete overview of radio systems and provides practicing wireless engineers with a convenient comprehensive reference."
- Patrick Roblin, Ohio State University

Radio Systems Engineering, Revised First Edition was previously published by Cambridge University Press (2016) ISBN 9781107068285. This version is © Steven W. Ellingson and has been lightly updated to correct known errata, minor issues with text and figures, and to present examples in color highlight boxes and some figures in color. It is made freely available and under a Creative Commons Attribution NonCommercial International License (CC BY NC 4.0).

Are you reviewing or adopting this book for a course?
Please help us understand your use by filling out this form: https://bit.ly/interest_radiosystemsengineering_revised1st
Join the instructor group (https://oercommons.org/groups/radio-systems-engineering-instructor-group/14443/) to connect with other instructors interested in this resource.

How to access the book
The main landing page for this book is https://doi.org/10.21061/radiosystemsengineering-revised1st.
The open textbook is freely available online in multiple formats including PDF and HTML [forthcoming].
A paperback print version (in color) is available for order here: https://www.amazon.com/Radio-Systems-Engineering-Revised-First/dp/1957213752

ISBNs
ISBN (PDF): 978-1-957213-76-7
ISBN (HTML): 978-1-957213-77-4 (accessible version forthcoming)
ISBN (print): 978-1-957213-75-0

Table of contents
Chapter 1: Introduction
Chapter 2: Antenna Fundamentals
Chapter 3: Propagation
Chapter 4: Noise
Chapter 5: Analog Modulation
Chapter 6: Digital Modulation
Chapter 7: Radio Link Analysis
Chapter 8: Two-Port Concepts
Chapter 9: Impedance Matching
Chapter 10: Amplifiers
Chapter 11: Linearity, Multistage Analysis, and Dynamic Range
Chapter 12: Antenna Integration
Chapter 13: Analog Filters & Multiplexers
Chapter 14: Frequency and Quadrature Conversion in the Analog Domain
Chapter 15: Receivers
Chapter 16: Frequency Synthesis
Chapter 17: Transmitters
Chapter 18: Digital Implementation of Radio Functions
Appendix A: Empirical Modeling of Mean Path Loss
Appendix B: Characteristics of Some Common Radio Systems

About the author
Dr. Steven W. Ellingson
Steven W. Ellingson is an Associate Professor of Electrical & Computer Engineering at Virginia Tech. He received the Ph.D. degree in Electrical Engineering from the Ohio State University. He held senior engineering positions at Booz-Allen & Hamilton, Raytheon, and the Ohio State University ElectroScience Laboratory before joining the faculty of Virginia Tech. His research is in the areas of antennas and propagation, applied signal processing, and radio frequency instrumentation, with funding from the U.S. National Science Foundation, National Aeronautics and Space Administration, the Defense Advanced Research Projects Agency, and the commercial communications and aerospace industries. Dr. Ellingson serves as a consultant to industry and government on topics pertaining to radio frequency systems.

Suggested citation
Ellingson, Steven W. (2023). Radio Systems Engineering, Revised First Edition. Blacksburg. https://doi.org/10.21061/radiosystemsengineering-revised1st. Licensed with CC BY NC 4.0.

View Errata: https://bit.ly/errata_radiosystemsengineering_revised1st
Report an Error: https://bit.ly/reporterror_radiosystemsengineering_revised1st

Accessibility
Virginia Tech is committed to making its publications accessible in accordance with the Americans with Disabilities Act of 1990.

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
Virginia Tech
Provider Set:
VTech Works
Author:
Steven W. Ellingson
Date Added:
01/18/2024
Ramp and Review
Read the Fine Print
Educational Use
Rating
0.0 stars

In this hands-on activity rolling a ball down an incline and having it collide into a cup the concepts of mechanical energy, work and power, momentum, and friction are all demonstrated. During the activity, students take measurements and use equations that describe these energy of motion concepts to calculate unknown variables, and review the relationships between these concepts.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Denise W. Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Ramp and Review (for High School)
Read the Fine Print
Educational Use
Rating
0.0 stars

In this hands-on activity rolling a ball down an incline and having it collide into a cup the concepts of mechanical energy, work and power, momentum, and friction are all demonstrated. During the activity, students take measurements and use equations that describe these energy of motion concepts to calculate unknown variables and review the relationships between these concepts.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Sprague
Chris Yakacki
Denise W. Carlson
Janet Yowell
Malinda Schaefer Zarske
Date Added:
10/14/2015
Ready to Erupt!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe an in-classroom visual representation of a volcanic eruption. The water-powered volcano demonstration is made in advance, using sand, hoses and a waterballoon, representing the main components of all volcanoes. During the activity, students observe, measure and sketch the volcano, seeing how its behavior provides engineers with indicators used to predict an eruption.

Subject:
Applied Science
Engineering
Geology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Geoffrey Hill
Malinda Schaefer Zarske
Date Added:
10/14/2015
A Recipe for Air
Read the Fine Print
Educational Use
Rating
0.0 stars

Why do we care about air? Breathe in, breathe out, breathe in... most, if not all, humans do this automatically. Do we really know what is in the air we breathe? In this activity, students use M&M(TM) candies to create pie graphs that show their understanding of the composition of air. They discuss why knowing this information is important to engineers and how engineers use this information to improve technology to better care for our planet.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Daria Kotys-Schwartz
Denise W. Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Recommendations for Increasing Replicability in Psychology: Recommendations for increasing replicability
Unrestricted Use
CC BY
Rating
0.0 stars

Replicability of findings is at the heart of any empirical science. The aim of this article is to move the current replicability debate in psychology towards concrete recommendations for improvement. We focus on research practices but also offer guidelines for reviewers, editors, journal management, teachers, granting institutions, and university promotion committees, highlighting some of the emerging and existing practical solutions that can facilitate implementation of these recommendations. The challenges for improving replicability in psychological science are systemic. Improvement can occur only if changes are made at many levels of practice, evaluation, and reward.

Subject:
Psychology
Social Science
Material Type:
Reading
Provider:
European Journal of Personality
Author:
Brent W. Roberts
Brian A. Nosek
David C. Funder
Filip De Fruyt
Hannelore Weber
Jaap J. A. Denissen
Jan De Houwer
Jelte M. Wicherts
Jens B. Asendorpf
Klaus Fiedler
Manfred Schmitt
Marcel A. G. van Aken
Marco Perugini
Mark Conner
Reinhold Kliegl
Susann Fiedler
Date Added:
08/07/2020
Reframe Patterns Lesson
Unrestricted Use
CC BY
Rating
0.0 stars

Context, purpose and audience. There are two broad types of assumptions that designers must identify and address: the first type are assumptions they, as designers, have as they begin a project; the second type are assumptions that are ambient in the project context–assumptions that many of the project stakeholders either hold or frequently experience. In both cases, naming the assumption and developing an articulation for how that assumption can be reconsidered can help direct a project toward greater impact.

This lesson is designed to help participants reframe these two types of assumptions. It can be used with design students from high school to continuing (adult) education. It is best delivered towards the end of the initial phase of design research (“Empathize” phase, to use the parlance of Stanford), after students have conducted interviews and other forms of research.

The lesson offers five reframe patterns. These are meant to help students identify particularly powerful articulations of reframed assumptions by providing five different jumping-off points for ideation. The patterns are best introduced and used lightly: as provocations rather than as a formula to rigidly follow.

We illustrate these reframe patterns using examples from disability studies. Thus, this lesson also serves as a “trojan horse” to infuse core design justice concepts.

Subject:
Applied Science
Architecture and Design
Career and Technical Education
Graphic Design
Material Type:
Activity/Lab
Lecture Notes
Lesson Plan
Provider:
Dartmouth College
Author:
Anthony W Fosu
Ava J Ori
Nitya Agarwala
Rafe Steinhauer
Date Added:
07/06/2022
Repairing Broken Bones
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about how biomedical engineers aid doctors in repairing severely broken bones. They learn about using pins, plates, rods and screws to repair fractures. They do this by designing, creating and testing their own prototype devices to repair broken turkey bones.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Janet Yowell
Malinda Schaefer Zarske
Todd Curtis
Date Added:
09/18/2014
Reproducible research practices, transparency, and open access data in the biomedical literature, 2015–2017
Unrestricted Use
CC BY
Rating
0.0 stars

Currently, there is a growing interest in ensuring the transparency and reproducibility of the published scientific literature. According to a previous evaluation of 441 biomedical journals articles published in 2000–2014, the biomedical literature largely lacked transparency in important dimensions. Here, we surveyed a random sample of 149 biomedical articles published between 2015 and 2017 and determined the proportion reporting sources of public and/or private funding and conflicts of interests, sharing protocols and raw data, and undergoing rigorous independent replication and reproducibility checks. We also investigated what can be learned about reproducibility and transparency indicators from open access data provided on PubMed. The majority of the 149 studies disclosed some information regarding funding (103, 69.1% [95% confidence interval, 61.0% to 76.3%]) or conflicts of interest (97, 65.1% [56.8% to 72.6%]). Among the 104 articles with empirical data in which protocols or data sharing would be pertinent, 19 (18.3% [11.6% to 27.3%]) discussed publicly available data; only one (1.0% [0.1% to 6.0%]) included a link to a full study protocol. Among the 97 articles in which replication in studies with different data would be pertinent, there were five replication efforts (5.2% [1.9% to 12.2%]). Although clinical trial identification numbers and funding details were often provided on PubMed, only two of the articles without a full text article in PubMed Central that discussed publicly available data at the full text level also contained information related to data sharing on PubMed; none had a conflicts of interest statement on PubMed. Our evaluation suggests that although there have been improvements over the last few years in certain key indicators of reproducibility and transparency, opportunities exist to improve reproducible research practices across the biomedical literature and to make features related to reproducibility more readily visible in PubMed.

Subject:
Biology
Life Science
Material Type:
Reading
Provider:
PLOS Biology
Author:
John P. A. Ioannidis
Joshua D. Wallach
Kevin W. Boyack
Date Added:
08/07/2020
Research Data Curation Bibliography
Unrestricted Use
CC BY
Rating
0.0 stars

The Research Data Curation Bibliography includes over 750 selected English-language articles, books, and technical reports that are useful in understanding the curation of digital research data in academic and other research institutions.

Subject:
Applied Science
Information Science
Material Type:
Primary Source
Reading
Textbook
Author:
Charles W. Bailey Jr.
Date Added:
05/14/2022
Research Data Curation and Management Bibliography
Unrestricted Use
CC BY
Rating
0.0 stars

The Research Data Curation and Management Bibliography includes over 800 selected English-language articles and books that are useful in understanding the curation of digital research data in academic and other research institutions. It covers topics such as research data creation, acquisition, metadata, provenance, repositories, management, policies, support services, funding agency requirements, open access, peer review, publication, citation, sharing, reuse, and preservation. Most sources have been published from January 2009 through December 2019; however, a limited number of earlier key sources are also included. The bibliography has links to included works. Abstracts are included in this bibliography if a work is under certain Creative Commons Attribution licenses. It is available as a 250-page PDF or a website.

Subject:
Applied Science
Information Science
Material Type:
Primary Source
Author:
Charles W. Bailey
Date Added:
11/02/2022
R for Reproducible Scientific Analysis
Unrestricted Use
CC BY
Rating
0.0 stars

This lesson in part of Software Carpentry workshop and teach novice programmers to write modular code and best practices for using R for data analysis. an introduction to R for non-programmers using gapminder data The goal of this lesson is to teach novice programmers to write modular code and best practices for using R for data analysis. R is commonly used in many scientific disciplines for statistical analysis and its array of third-party packages. We find that many scientists who come to Software Carpentry workshops use R and want to learn more. The emphasis of these materials is to give attendees a strong foundation in the fundamentals of R, and to teach best practices for scientific computing: breaking down analyses into modular units, task automation, and encapsulation. Note that this workshop will focus on teaching the fundamentals of the programming language R, and will not teach statistical analysis. The lesson contains more material than can be taught in a day. The instructor notes page has some suggested lesson plans suitable for a one or half day workshop. A variety of third party packages are used throughout this workshop. These are not necessarily the best, nor are they comprehensive, but they are packages we find useful, and have been chosen primarily for their usability.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Adam H. Sparks
Ahsan Ali Khoja
Amy Lee
Ana Costa Conrado
Andrew Boughton
Andrew Lonsdale
Andrew MacDonald
Andris Jankevics
Andy Teucher
Antonio Berlanga-Taylor
Ashwin Srinath
Ben Bolker
Bill Mills
Bret Beheim
Clare Sloggett
Daniel
Dave Bridges
David J. Harris
David Mawdsley
Dean Attali
Diego Rabatone Oliveira
Drew Tyre
Elise Morrison
Erin Alison Becker
Fernando Mayer
François Michonneau
Giulio Valentino Dalla Riva
Gordon McDonald
Greg Wilson
Harriet Dashnow
Ido Bar
Jaime Ashander
James Balamuta
James Mickley
Jamie McDevitt-Irwin
Jeffrey Arnold
Jeffrey Oliver
John Blischak
Jonah Duckles
Josh Quan
Julia Piaskowski
Kara Woo
Kate Hertweck
Katherine Koziar
Katrin Leinweber
Kellie Ottoboni
Kevin Weitemier
Kiana Ashley West
Kieran Samuk
Kunal Marwaha
Kyriakos Chatzidimitriou
Lachlan Deer
Lex Nederbragt
Liz Ing-Simmons
Lucy Chang
Luke W Johnston
Luke Zappia
Marc Sze
Marie-Helene Burle
Marieke Frassl
Mark Dunning
Martin John Hadley
Mary Donovan
Matt Clark
Melissa Kardish
Mike Jackson
Murray Cadzow
Narayanan Raghupathy
Naupaka Zimmerman
Nelly Sélem
Nicholas Lesniak
Nicholas Potter
Nima Hejazi
Nora Mitchell
Olivia Rata Burge
Paula Andrea Martinez
Pete Bachant
Phil Bouchet
Philipp Boersch-Supan
Piotr Banaszkiewicz
Raniere Silva
Rayna Michelle Harris
Remi Daigle
Research Bazaar
Richard Barnes
Robert Bagchi
Rémi Emonet
Sam Penrose
Sandra Brosda
Sarah Munro
Sasha Lavrentovich
Scott Allen Funkhouser
Scott Ritchie
Sebastien Renaut
Thea Van Rossum
Timothy Eoin Moore
Timothy Rice
Tobin Magle
Trevor Bekolay
Tyler Crawford Kelly
Vicken Hillis
Yuka Takemon
bippuspm
butterflyskip
waiteb5
Date Added:
03/20/2017
Risk of Bias in Reports of In Vivo Research: A Focus for Improvement
Unrestricted Use
CC BY
Rating
0.0 stars

The reliability of experimental findings depends on the rigour of experimental design. Here we show limited reporting of measures to reduce the risk of bias in a random sample of life sciences publications, significantly lower reporting of randomisation in work published in journals of high impact, and very limited reporting of measures to reduce the risk of bias in publications from leading United Kingdom institutions. Ascertainment of differences between institutions might serve both as a measure of research quality and as a tool for institutional efforts to improve research quality.

Subject:
Biology
Life Science
Material Type:
Reading
Provider:
PLOS Biology
Author:
Aaron Lawson McLean
Aikaterini Kyriakopoulou
Andrew Thomson
Aparna Potluru
Arno de Wilde
Cristina Nunes-Fonseca
David W. Howells
Emily S. Sena
Gillian L. Currie
Hanna Vesterinen
Julija Baginskitae
Kieren Egan
Leonid Churilov
Malcolm R. Macleod
Nicki Sherratt
Rachel Hemblade
Stylianos Serghiou
Theo Hirst
Zsanett Bahor
Date Added:
08/07/2020
A River Ran Through It
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how water is used to generate electricity. They investigate water's potential-to-kinetic energy transformation in hands-on activities about falling water and waterwheels. During the activities, they take measurements, calculate averages and graph results. Students also learn the history of the waterwheel and how engineers use water turbines in hydroelectric power plants today. They discover the advantages and disadvantages of hydroelectric power. In a literacy activity, students learn and write about an innovative new hydro-electrical power generation technology.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Malinda Schaefer Zarske
Natalie Mach
Sabre Duren
Xochitl Zamora-Thompson
Date Added:
09/18/2014
Rock Jeopardy!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students reinforce their understanding of rocks, the rock cycle, and geotechnical engineering by playing a trivia game. They work in groups to prepare Jeopardy-type trivia questions (answers) and compete against each other to demonstrate their knowledge of rocks and engineering.

Subject:
Applied Science
Engineering
Geology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Denise W. Carlson
Kate Beggs
Kristin Field
Malinda Schaefer Zarske
Date Added:
10/14/2015
Rock Solid
Read the Fine Print
Educational Use
Rating
0.0 stars

Rocks cover the earth's surface, including what is below or near human-made structures. With rocks everywhere, breaking rocks can be hazardous and potentially disastrous to people. Students are introduced to three types of material stress related to rocks: compressional, torsional and shear. They learn about rock types (sedimentary, igneous and metamorphic), and about the occurrence of stresses and weathering in nature, including physical, chemical and biological weathering.

Subject:
Applied Science
Engineering
Geology
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jacquelyn F. Sullivan
Malinda Schaefer Zarske
Megan Podlogar
Date Added:
09/18/2014
Rocket Power
Read the Fine Print
Educational Use
Rating
0.0 stars

By making and testing simple balloon rockets, students acquire a basic understanding of Newton's third law of motion as it applies to rockets. Using balloons, string, straws and tape, they see how rockets are propelled by expelling gases, and test their rockets in horizontal and incline conditions. They also learn about the many types of engineers who design rockets and spacecraft.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Geoff Hill
Jessica Butterfield
Jessica Todd
Sam Semakula
Date Added:
10/14/2015
Rooftop Gardens
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore whether rooftop gardens are a viable option for combating the urban heat island effect. Can rooftop gardens reduce the temperature inside and outside houses? Teams each design and construct two model buildings using foam core board, one with a "green roof" and the other with a black tar paper roof. They measure and graph the ambient and inside building temperatures while under heat lamps and fans. Then students analyze the data and determine whether the rooftop gardens are beneficial to the inhabitants.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Denise W. Carlson
Stephanie Rivale
Date Added:
09/18/2014