Updating search results...

Search Resources

429 Results

View
Selected filters:
  • data
Introduction to the Command Line for Economics
Unrestricted Use
CC BY
Rating
0.0 stars

Command line interface (OS shell) and graphic user interface (GUI) are different ways of interacting with a computer’s operating system. The shell is a program that presents a command line interface which allows you to control your computer using commands entered with a keyboard instead of controlling graphical user interfaces (GUIs) with a mouse/keyboard combination. There are quite a few reasons to start learning about the shell: The shell gives you power. The command line gives you the power to do your work more efficiently and more quickly. When you need to do things tens to hundreds of times, knowing how to use the shell is transformative. To use remote computers or cloud computing, you need to use the shell.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Andras Vereckei
Arieda Muço
Miklós Koren
Date Added:
08/07/2020
Introduction to the Command Line for Genomics
Unrestricted Use
CC BY
Rating
0.0 stars

Data Carpentry lesson to learn to navigate your file system, create, copy, move, and remove files and directories, and automate repetitive tasks using scripts and wildcards with genomics data. Command line interface (OS shell) and graphic user interface (GUI) are different ways of interacting with a computer’s operating system. The shell is a program that presents a command line interface which allows you to control your computer using commands entered with a keyboard instead of controlling graphical user interfaces (GUIs) with a mouse/keyboard combination. There are quite a few reasons to start learning about the shell: For most bioinformatics tools, you have to use the shell. There is no graphical interface. If you want to work in metagenomics or genomics you’re going to need to use the shell. The shell gives you power. The command line gives you the power to do your work more efficiently and more quickly. When you need to do things tens to hundreds of times, knowing how to use the shell is transformative. To use remote computers or cloud computing, you need to use the shell.

Subject:
Applied Science
Computer Science
Genetics
Information Science
Life Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Amanda Charbonneau
Amy E. Hodge
Anita Schürch
Bastian Greshake Tzovaras
Bérénice Batut
Colin Davenport
Diya Das
Erin Alison Becker
François Michonneau
Giulio Valentino Dalla Riva
Jessica Elizabeth Mizzi
Karen Cranston
Kari L Jordan
Mattias de Hollander
Mike Lee
Niclas Jareborg
Omar Julio Sosa
Rayna Michelle Harris
Ross Cunning
Russell Neches
Sarah Stevens
Shannon EK Joslin
Sheldon John McKay
Siva Chudalayandi
Taylor Reiter
Tobi
Tracy Teal
Tristan De Buysscher
Date Added:
08/07/2020
Intro to Calculating Confidence Intervals
Unrestricted Use
CC BY
Rating
0.0 stars

This video will introduce how to calculate confidence intervals around effect sizes using the MBESS package in R. All materials shown in the video, as well as content from our other videos, can be found here: https://osf.io/7gqsi/

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Lecture
Provider:
Center for Open Science
Author:
Center for Open Science
Date Added:
08/07/2020
Intro to R and RStudio for Genomics
Unrestricted Use
CC BY
Rating
0.0 stars

Welcome to R! Working with a programming language (especially if it’s your first time) often feels intimidating, but the rewards outweigh any frustrations. An important secret of coding is that even experienced programmers find it difficult and frustrating at times – so if even the best feel that way, why let intimidation stop you? Given time and practice* you will soon find it easier and easier to accomplish what you want. Why learn to code? Bioinformatics – like biology – is messy. Different organisms, different systems, different conditions, all behave differently. Experiments at the bench require a variety of approaches – from tested protocols to trial-and-error. Bioinformatics is also an experimental science, otherwise we could use the same software and same parameters for every genome assembly. Learning to code opens up the full possibilities of computing, especially given that most bioinformatics tools exist only at the command line. Think of it this way: if you could only do molecular biology using a kit, you could probably accomplish a fair amount. However, if you don’t understand the biochemistry of the kit, how would you troubleshoot? How would you do experiments for which there are no kits? R is one of the most widely-used and powerful programming languages in bioinformatics. R especially shines where a variety of statistical tools are required (e.g. RNA-Seq, population genomics, etc.) and in the generation of publication-quality graphs and figures. Rather than get into an R vs. Python debate (both are useful), keep in mind that many of the concepts you will learn apply to Python and other programming languages. Finally, we won’t lie; R is not the easiest-to-learn programming language ever created. So, don’t get discouraged! The truth is that even with the modest amount of R we will cover today, you can start using some sophisticated R software packages, and have a general sense of how to interpret an R script. Get through these lessons, and you are on your way to being an accomplished R user! * We very intentionally used the word practice. One of the other “secrets” of programming is that you can only learn so much by reading about it. Do the exercises in class, re-do them on your own, and then work on your own problems.

Subject:
Applied Science
Biology
Computer Science
Information Science
Life Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Ahmed Moustafa
Alexia Cardona
Andrea Ortiz
Jason Williams
Krzysztof Poterlowicz
Naupaka Zimmerman
Yuka Takemon
Date Added:
08/07/2020
Julia Data Science
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an open-source and open access book on how to do Data Science using Julia. The book describes the basics of the Julia programming language DataFrames.jl for data manipulation and Makie.jl for data visualization.

You will learn to:

- Read CSV and Excel data into Julia
- Process data in Julia, that is, learn how to answer data questions
- Filter and subset data
- Handle missing data
- Join multiple data sources together
- Group and summarize data
- Export data out of Julia to CSV and Excel files
- Plot data with different Makie.jl backends
- Save visualizations in several formats such as PNG or PDF
- Use different plotting functions to make diverse data visualizations
- Customize visualizations with attributes
- Use and create new plotting themes
- Add LaTeX elements to plots
- Manipulate color and palettes
- Create complex figure layouts

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Textbook
Author:
Jose Storopoli
Lazaro Alonso
Rik Huijzer
Date Added:
11/10/2021
La Terminal de Unix
Unrestricted Use
CC BY
Rating
0.0 stars

Software Carpentry lección para la terminal de Unix La terminal de Unix ha existido por más tiempo que la mayoría de sus usuarios. Ha sobrevivido tanto tiempo porque es una herramienta poderosa que permite a las personas hacer cosas complejas con sólo unas pocas teclas. Lo más importante es que ayuda a combinar programas existentes de nuevas maneras y automatizar tareas repetitivas, en vez de estar escribiendo las mismas cosas una y otra vez. El uso del terminal o shell es fundamental para usar muchas otras herramientas poderosas y recursos informáticos (incluidos los supercomputadores o “computación de alto rendimiento”). Esta lección te guiará en el camino hacia el uso eficaz de estos recursos.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Adam Huffman
Alejandra Gonzalez-Beltran
AnaBVA
Andrew Sanchez
Anja Le Blanc
Ashwin Srinath
Brian Ballsun-Stanton
Colin Morris
Dani Ledezma
Dave Bridges
Erin Becker
Francisco Palm
François Michonneau
Gabriel A. Devenyi
Gerard Capes
Giuseppe Profiti
Gordon Rhea
Jake Cowper Szamosi
Jared Flater
Jeff Oliver
Jonah Duckles
Juan M. Barrios
Katrin Leinweber
Kelly L. Rowland
Kevin Alquicira
Kunal Marwaha
LauCIFASIS
Marisa Lim
Martha Robinson
Matias Andina
Michael Zingale
Nicolas Barral
Nohemi Huanca Nunez
Olemis Lang
Otoniel Maya
Paula Andrea Martinez
Raniere Silva
Rayna M Harris
Shirley Alquicira
Silvana Pereyra
Steve Leak
Stéphane Guillou
Thomas Mellan
Veronica Jimenez-Jacinto
William L. Close
Yee Mey
csqrs
sjnair
Date Added:
08/07/2020
Lab in Psycholinguistics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Hands-on experience designing, conducting, analyzing, and presenting experiments on the structure and processing of human language. Focuses on constructing, conducting, analyzing, and presenting an original and independent experimental project of publishable quality. Develops skills in reading and writing scientific research reports in cognitive science, including evaluating the methods section of a published paper, reading and understanding graphical displays and statistical claims about data, and evaluating theoretical claims based on experimental data. Instruction and practice in oral and written communication provided.

Subject:
Arts and Humanities
Life Science
Linguistics
Social Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Gibson, Edward
Date Added:
02/01/2017
Latitude, Angle of Sun and Solar Energy
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students massage (by sorts) spreadsheet data to tease out the relationships between latitude, angle of the sun, surface area of light beam and temperature. Also introduces possible confounding variable of elevation and the need to control for elevation.
• Uses data in a spreadsheet (provided) and flashlight beam lab or Sketchup file to see light surface area increase or decrease with angle change.

Material Type:
Lesson Plan
Provider:
Lowell High School
Author:
Mark Wenning
Date Added:
06/11/2011
Learning Data Ethics for Open Data Sharing
Unrestricted Use
CC BY
Rating
0.0 stars

"Learning Data Ethics for Data Sharing" is an Open Educational Resource (OER) for library students, data librarians, or researchers interested in learning how to ethically share data into data repositories. Often DEIA topics are discussed in terms of data collection or in regards to public use of data; this work attempts to target responsible ethics at the process that is occurring while preparing to share data, with the goal of creating FAIR access to the data and reusability for future research.

Additional documentation is available at https://osf.io/cb3sa/.

Subject:
Applied Science
Information Science
Material Type:
Activity/Lab
Reading
Author:
Lynnee Argabright
Date Added:
11/28/2022
Learninglib
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Open Nordic library-produced LEARNING RESOURCES that develop students' academic digital competence.
Learning Ressources in LearningLib.org cover subjects like:
Data Management
AI
Information seeking
Source Critisism
Reference Management
Literature seeking

Subject:
Applied Science
Education
Information Science
Material Type:
Activity/Lab
Interactive
Student Guide
Author:
Solveig Johnsen
Date Added:
02/14/2024
Learning statistics with jamovi
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This textbook covers the contents of an introductory statistics class, as typically taught to undergraduate psychology, health or social science students. The book covers how to get started in jamovi as well as giving an introduction to data manipulation. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, correlation, t-tests, regression, ANOVA and factor analysis. Bayesian statistics are touched on at the end of the book.

Subject:
Mathematics
Statistics and Probability
Material Type:
Textbook
Author:
Danielle J Navarro
David R Foxcroft
Date Added:
03/21/2023
Legal & Policy Issues
Unrestricted Use
Public Domain
Rating
0.0 stars

Conversations regarding research data often intersect with questions related to ethical, legal, and policy issues for managing research data. This lesson will define copyrights, licenses, and waivers, discuss ownership and intellectual property, and describe some reasons for data restriction. After completing this lesson, participants will be able to identify ethical, legal, and policy considerations that surround the use and management of research data.

Subject:
Applied Science
Education
Higher Education
Information Science
Material Type:
Lesson
Provider:
DataONE
Author:
DataONE Community Engagement & Outreach Working Group
Date Added:
11/21/2020
Library Carpentry: Introduction to Git
Unrestricted Use
CC BY
Rating
0.0 stars

Library Carpentry lesson: An introduction to Git. What We Will Try to Do Begin to understand and use Git/GitHub. You will not be an expert by the end of the class. You will probably not even feel very comfortable using Git. This is okay. We want to make a start but, as with any skill, using Git takes practice. Be Excellent to Each Other If you spot someone in the class who is struggling with something and you think you know how to help, please give them a hand. Try not to do the task for them: instead explain the steps they need to take and what these steps will achieve. Be Patient With The Instructor and Yourself This is a big group, with different levels of knowledge, different computer systems. This isn’t your instructor’s full-time job (though if someone wants to pay them to play with computers all day they’d probably accept). They will do their best to make this session useful. This is your session. If you feel we are going too fast, then please put up a pink sticky. We can decide as a group what to cover.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Alex Mendes
Alexander Gary Zimmerman
Alexander Mendes
Amiya Maji
Amy Olex
Andrew Lonsdale
Annika Rockenberger
Begüm D. Topçuoğlu
Belinda Weaver
Benjamin Bolker
Bill McMillin
Brian Moore
Casey Youngflesh
Christoph Junghans
Christopher Erdmann
DSTraining
Dan Michael O. Heggø
David Jennings
Erin Alison Becker
Evan Williamson
Garrett Bachant
Grant Sayer
Ian Lee
Jake Lever
Jamene Brooks-Kieffer
James Baker
James E McClure
James O'Donnell
James Tocknell
Janoš Vidali
Jeffrey Oliver
Jeremy Teitelbaum
Jeyashree Krishnan
Joe Atzberger
Jonah Duckles
Jonathan Cooper
João Rodrigues
Katherine Koziar
Katrin Leinweber
Kunal Marwaha
Kurt Glaesemann
L.C. Karssen
Lauren Ko
Lex Nederbragt
Madicken Munk
Maneesha Sane
Marie-Helene Burle
Mark Woodbridge
Martino Sorbaro
Matt Critchlow
Matteo Ceschia
Matthew Bourque
Matthew Hartley
Maxim Belkin
Megan Potterbusch
Michael Torpey
Michael Zingale
Mingsheng Zhang
Nicola Soranzo
Nima Hejazi
Nora McGregor
Oscar Arbeláez
Peace Ossom Williamson
Raniere Silva
Rayna Harris
Rene Gassmoeller
Rich McCue
Richard Barnes
Ruud Steltenpool
Ryan Wick
Rémi Emonet
Samniqueka Halsey
Samuel Lelièvre
Sarah Stevens
Saskia Hiltemann
Schlauch, Tobias
Scott Bailey
Shari Laster
Simon Waldman
Stefan Siegert
Thea Atwood
Thomas Morrell
Tim Dennis
Tommy Keswick
Tracy Teal
Trevor Keller
TrevorLeeCline
Tyler Crawford Kelly
Tyler Reddy
Umihiko Hoshijima
Veronica Ikeshoji-Orlati
Wes Harrell
Will Usher
William Sacks
Wolmar Nyberg Åkerström
Yuri
abracarambar
ajtag
butterflyskip
cmjt
hdinkel
jonestoddcm
pllim
Date Added:
08/07/2020
Library Carpentry: Introduction to Working with Data (Regular Expressions)
Unrestricted Use
CC BY
Rating
0.0 stars

This Library Carpentry lesson introduces librarians and others to working with data. This Library Carpentry lesson introduces people with library- and information-related roles to working with data using regular expressions. The lesson provides background on the regular expression language and how it can be used to match and extract text and to clean data.

Subject:
Applied Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Alex Volkov
Alexander Mendes
Angus Taggart
Belinda Weaver
BertrandCaron
Bianca Peterson
Christopher Edsall
Christopher Erdmann
Chuck McAndrew
Dan Michael Heggø
Dan Michael O. Heggø
Elizabeth Lisa McAulay
Felix Hemme
François Michonneau
James Baker
Janice Chan
Jeffrey Oliver
Jeremy Guillette
Jodi Schneider
Jonah Duckles
Katherine Koziar
Katrin Leinweber
Kunal Marwaha
PH03N1X007
Paul R. Pival
Saskia Scheltjens
Shari Laster
Tim Dennis
fdsayre
lsult
remerjohnson
yvonnemery
Date Added:
08/07/2020
Library Carpentry: OpenRefine
Unrestricted Use
CC BY
Rating
0.0 stars

Library Carpentry lesson: an introduction to OpenRefine for Librarians This Library Carpentry lesson introduces people working in library- and information-related roles to working with data in OpenRefine. At the conclusion of the lesson you will understand what the OpenRefine software does and how to use the OpenRefine software to work with data files.

Subject:
Applied Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Alexander Mendes
Anna Neatrour
Antonin Delpeuch
Betty Rozum
Christina Koch
Christopher Erdmann
Daniel Bangert
Elizabeth Lisa McAulay
Evan Williamson
Jamene Brooks-Kieffer
James Baker
Jamie Jamison
Jeffrey Oliver
Katherine Koziar
Naupaka Zimmerman
Paul R. Pival
Rémi Emonet
Tim Dennis
Tom Honeyman
Tracy Teal
andreamcastillo
dnesdill
hauschke
mhidas
Date Added:
08/07/2020
Library Carpentry: SQL
Unrestricted Use
CC BY
Rating
0.0 stars

Library Carpentry, an introduction to SQL for Librarians This Library Carpentry lesson introduces librarians to relational database management system using SQLite. At the conclusion of the lesson you will: understand what SQLite does; use SQLite to summarise and link data.

Subject:
Applied Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Anna-Maria Sichani
Belinda Weaver
Christopher Erdmann
Dan Michael Heggø
David Kane
Elaine Wong
Emanuele Lanzani
Fernando Rios
Jamene Brooks-Kieffer
James Baker
Janice Chan
Jeffrey Oliver
Katrin Leinweber
Kunal Marwaha
Reid Otsuji
Ruud Steltenpool
Tim Dennis
mdschleu
orobecca
thegsi
Date Added:
08/07/2020
Library Carpentry: The UNIX Shell
Unrestricted Use
CC BY
Rating
0.0 stars

Library Carpentry lesson to learn how to use the Shell. This Library Carpentry lesson introduces librarians to the Unix Shell. At the conclusion of the lesson you will: understand the basics of the Unix shell; understand why and how to use the command line; use shell commands to work with directories and files; use shell commands to find and manipulate data.

Subject:
Applied Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Adam Huffman
Alex Kassil
Alex Mendes
Alexander Konovalov
Alexander Morley
Ana Costa Conrado
Andrew Reid
Andrew T. T. McRae
Ariel Rokem
Ashwin Srinath
Bagus Tris Atmaja
Belinda Weaver
Benjamin Bolker
Benjamin Gabriel
BertrandCaron
Brian Ballsun-Stanton
Christopher Erdmann
Christopher Mentzel
Colin Sauze
Dan Michael Heggø
Dave Bridges
David McKain
Dmytro Lituiev
Elena Denisenko
Eric Jankowski
Erin Alison Becker
Evan Williamson
Farah Shamma
Gabriel Devenyi
Gerard Capes
Giuseppe Profiti
Halle Burns
Hannah Burkhardt
Ian Lessing
Ian van der Linde
Jake Cowper Szamosi
James Baker
James Guelfi
Jarno Rantaharju
Jarosław Bryk
Jason Macklin
Jeffrey Oliver
John Pellman
Jonah Duckles
Jonny Williams
Katrin Leinweber
Kevin M. Buckley
Kunal Marwaha
Laurence
Marc Gouw
Marie-Helene Burle
Marisa Lim
Martha Robinson
Martin Feller
Megan Fritz
Michael Lascarides
Michael Zingale
Michele Hayslett
Mike Henry
Morgan Oneka
Murray Hoggett
Nicola Soranzo
Nicolas Barral
Noah D Brenowitz
Owen Kaluza
Patrick McCann
Peter Hoyt
Rafi Ullah
Raniere Silva
Ruud Steltenpool
Rémi Emonet
Stephan Schmeing
Stephen Jones
Stephen Leak
Stéphane Guillou
Susan J Miller
Thomas Mellan
Tim Dennis
Tom Dowrick
Travis Lilleberg
Victor Koppejan
Vikram Chhatre
Yee Mey
colinmorris
csqrs
earkpr
ekaterinailin
hugolio
jenniferleeucalgary
reshama shaikh
sjnair
Date Added:
08/07/2020
Licensing your research
Unrestricted Use
CC BY
Rating
0.0 stars

Join us for a 30 minute guest webinar by Brandon Butler, Director of Information Policy at the University of Virginia. This webinar will introduce questions to think about when picking a license for your research. You can signal which license you pick using the License Picker on the Open Science Framework (OSF; https://osf.io). The OSF is a free, open source web application built to help researchers manage their workflows. The OSF is part collaboration tool, part version control software, and part data archive. The OSF connects to popular tools researchers already use, like Dropbox, Box, Github, Mendeley, and now is integrated with JASP, to streamline workflows and increase efficiency.

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Lecture
Provider:
Center for Open Science
Author:
Center for Open Science
Date Added:
08/07/2020