Updating search results...

Search Resources

28 Results

View
Selected filters:
  • NGSS.HS.PS3.2 - Develop and use models to illustrate that energy at the macroscopic sc...
  • NGSS.HS.PS3.2 - Develop and use models to illustrate that energy at the macroscopic sc...
Pendulum Lab
Unrestricted Use
CC BY
Rating
0.0 stars

Play with one or two pendulums and discover how the period of a simple pendulum depends on the length of the string, the mass of the pendulum bob, and the amplitude of the swing. It's easy to measure the period using the photogate timer. You can vary friction and the strength of gravity. Use the pendulum to find the value of g on planet X. Notice the anharmonic behavior at large amplitude.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Trish Loeblein
Date Added:
10/27/2008
Pendulum Lab (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Play with one or two pendulums and discover how the period of a simple pendulum depends on the length of the string, the mass of the pendulum bob, and the amplitude of the swing. It's easy to measure the period using the photogate timer. You can vary friction and the strength of gravity. Use the pendulum to find the value of g on planet X. Notice the anharmonic behavior at large amplitude.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Patricia Loblein
Date Added:
07/02/2012
Phase Change
Unrestricted Use
CC BY
Rating
0.0 stars

In this activity, students explore phase change at a molecular level. They trace the path of an atom to view intermolecular interactions and investigate how temperature relates to phase change. Upon activity completion, students will be able to give examples of phase change, explain how the input of energy into a system affects the state of matter, and describe how both latent heat and evaporative cooling play a role in changes of phase.

Subject:
Applied Science
Physical Science
Technology
Material Type:
Activity/Lab
Provider:
Concord Consortium
Provider Set:
Concord Consortium
Author:
Concord Consortium
Date Added:
05/11/2011
The Science of Knapping
Unrestricted Use
CC BY
Rating
0.0 stars

Explore the physics and material science of making stone tools. Educator Nate Salzman walks us through the surprisingly complex science of flintknapping, or the process of turning stone into blades, arrowheads, spear points, axes, jewelry and more. Making tools from stone may be thousands of years old, but required people to think about the properties of the material they were using and the physics of striking the stone to shape it just right.

Consider using this resource to support classroom learning about the relationship between microscopic and macroscopic properties and how forces are transmitted. Animations derived from this video have been published separately as "Animations - The Science of Knapping."

This resource is part of Jefferson Patterson Park and Museum’s open educational resources project to provide history, ecology, archaeology, and conservation resources related to our 560 acre public park. More of our content can be found on YouTube and SketchFab. JPPM is a part of the Maryland Historical Trust under the Maryland Department of Planning.

Subject:
Ancient History
Applied Science
Arts and Humanities
Geology
History
Physical Science
Physics
World Cultures
Material Type:
Module
Provider:
Jefferson Patterson Park and Museum
Author:
JPPM Admin
Date Added:
06/07/2022
Slinkies as Solenoids
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students use an old fashion children's toy, a metal slinky, to mimic and understand the magnetic field generated in an MRI machine. The metal slinky mimics the magnetic field of a solenoid, which forms the basis for the magnet of the MRI machine. Students run current through the slinky and use computer and calculator software to explore the magnetic field created by the slinky.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
Spectroscopy
Read the Fine Print
Rating
0.0 stars

What happens when an excited atom emits a photon? What can we deduce about that atom based on the photons it can emit? A series of interactive models allows you to examine how the energy levels the electrons of an atom occupy affect the types of photons that can be emitted. Use a digital spectrometer to record which wavelengths certain atoms will emit, and then use this knowledge to compare and identify types of atoms. Students will be abe to:

Subject:
Applied Science
Chemistry
Education
Engineering
Mathematics
Physical Science
Physics
Material Type:
Data Set
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/13/2011
Thrown for a Loop
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students begin to focus on the torque associated with a current carrying loop in a magnetic field. Students are prompted with example problems and use diagrams to visualize the vector product. In addition, students learn to calculate the energy of this loop in the magnetic field. Several example problems are included and completed as a class. A homework assignment is also attached as a means of student assessment.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
What makes a gas, a greenhouse gas?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act out 4 different molecules (nitrogen, oxygen, carbon dioxide and water vapor) to discover which ones are greenhouse gases and which ones are not.

Subject:
Applied Science
Atmospheric Science
Career and Technical Education
Environmental Science
Environmental Studies
Physical Science
Material Type:
Activity/Lab
Interactive
Lesson
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
Colorado State University
Little Shop of Physics
Date Added:
07/27/2022