Updating search results...

Search Resources

35 Results

View
Selected filters:
  • NGSS.HS.PS2.6 - Communicate scientific and technical information about why the molecul...
  • NGSS.HS.PS2.6 - Communicate scientific and technical information about why the molecul...
Quantum Dots and Colors
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the physical concept of the colors of rainbows as light energy in the form of waves with distinct wavelengths, but in a different manner than traditional kaleidoscopes. Looking at different quantum dot solutions, they make observations and measurements, and graph their data. They come to understand how nanoparticles interact with absorbing photons to produce colors. They learn the dependence of particle size and color wavelength and learn about real-world applications for using these colorful liquids.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marc Bird
Date Added:
09/18/2014
Semiconductors
Read the Fine Print
Rating
0.0 stars

Semiconductors are the materials that make modern electronics work. Learn about the basic properties of intrinsic and extrinsic or 'doped' semiconductors with several visualizations. Turn a silicon crystal into an insulator or a conductor, create a depletion region between semiconductors, and explore probability waves of an electron in this interactive activity.

Subject:
Applied Science
Education
Engineering
Life Science
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Silly Semi-Solids
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams make polymers using ordinary household supplies (glue, borax, water). They experiment with the semi-solid material when warm and cold to see and feel its elastic and viscous properties. Students will begin to understand how the electrical forces between particles change as temperature or the force applied to the substance changes. Is it a solid, a liquid, or something in between? How might it be used?

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jacqueline Lanfranchi
Mark Bronski
Mike Galecki
Date Added:
09/18/2014
Soap vs. Shampoo Surfactant Lab
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the properties of solutions—such as ion interactions, surface tension and viscosity—as they make their own soap and shampoo and then compare their properties. Working as if they are chemical engineers, they explore and compare how the two surfactants behave in tap water, as well as classroom-prepared acidic water, hard water and seawater using four tests: a “shake test” (assessing the amount of bubbles produced), a surface tension test, a viscosity test, and a pH test. Then they coalesce their findings into a recommendation for how to engineer the best soap versus shampoo. The activity may be shortened by using purchased liquid soap and shampoo from which students proceed to conduct the four tests. A lab worksheet and post-quiz are provided.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Dahlia Amato
Date Added:
02/03/2017
Superhydrophobicity: The Lotus Effect
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to superhydrophobic surfaces and the "lotus effect." Water spilled on a superhydrophobic surface does not wet the surface, but simply rolls off. Additionally, as water moves across the superhydrophobic surface, it picks up and carries away any foreign material, such as dust or dirt. Students learn how plants create and use superhydrophobic surfaces in nature and how engineers have created human-made products that mimic the properties of these natural surfaces. They also learn about the tendency of all superhydrophobic surfaces to develop water droplets that do not roll off the surface but become "pinned" under certain conditions, such as water droplets formed from condensation. They see how the introduction of mechanical energy can "unpin" these water droplets and restore the desirable properties of the superhydrophobic surface.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
Surface Tension
Read the Fine Print
Educational Use
Rating
0.0 stars

Surface tension accounts for many of the interesting properties we associate with water. By learning about surface tension and adhesive forces, students learn why liquid jets of water break into droplets rather than staying in a continuous stream. Through hands-on activities, students learn how the combination of adhesive forces and cohesive forces cause capillary motion. They study different effects of capillary motion and use capillary motion to measure surface tension. Students explore the phenomena of wetting and hydrophobic and hydrophilic surfaces and see how water's behavior changes when a surface is treated with different coatings. A lotus leaf is a natural example of a superhydrophobic surface, with its water-repellent, self-cleaning characteristics. Students examine the lotus effect on natural leaves and human-made superhydrophobic surfaces, and explore how the lotus leaf repels dewy water through vibration. See the Unit Overview section for details on each lesson in this unit.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
Surface Tension Basics
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with the question: "Why does a liquid jet break up into droplets?" and introduced to its importance in inkjet printers. A discussion of cohesive forces and surface tension is included, as well as surface acting agents (surfactants) and their ability to weaken the surface tension of water. Students observe the effects of surface tension using common household materials. Finally, students return to the original question through a homework assignment that helps them relate surface tension and surface area to the creation of water droplets from a liquid jet.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
Thirsty for Gold
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams conduct an experiment that uses gold nanoparticles as sensors of chemical agents to determine which of four sports drinks has the most electrolytes. In this way, students are introduced to gold nanoparticles and their influence on particle or cluster size and fluorescence. They also learn about surface plasmon resonance phenomena and how it applies to gold nanoparticle technologies, which touches on the basics of the electromagnetic radiation spectrum, electrolyte chemistry and nanoscience. Using some basic chemistry and physics principles, students develop a conceptual understanding of how gold nanoparticles function. They also learn of important practical applications in biosensing.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marc Bird
Sarah Castillo
Date Added:
09/18/2014
Tissue Mechanics
Read the Fine Print
Educational Use
Rating
0.0 stars

Students reflect on their experiences making silly putty (the previous hands-on activity in the unit), especially why changing the borax concentration alters the mechanical properties of silly putty and how this pertains to tissue mechanics. Students learn why engineers must understand tissue mechanics in order to design devices that will be implanted or used inside bodies, to study pathologies of tissues and how this alters tissue function, and to design prosthetics. Finally, students learn about collagen, elastin and proteoglycans and their roles in giving body tissues their unique functions. This prepares them for the culminating design-build-test activity of the unit.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandi N. Briggs
Date Added:
09/18/2014
Transistors: The Field Effect
Read the Fine Print
Rating
0.0 stars

Transistors are the building blocks of modern electronic devices. Your cell phones, iPods, and computers all depend on them to operate. Thanks to today's microfabrication technology, transistors can be made very tiny and be massively produced. You are probably using billions of them while working with this activity now--as of 2006, a dual-core Intel microprocessor contains 1.7 billion transistors. The field effect transistor is the most common type of transistor. So we will focus on it in this activity.

Subject:
Applied Science
Education
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Viscoelasticity
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concept of viscoelasticity and some of the material behaviors of viscoelastic materials, including strain rate dependence, stress relaxation, creep, hysteresis and preconditioning. Viscoelastic material behavior is compared to elastic solids and viscous fluids. Students learn about materials that have viscoelastic behavior along with the importance of engineers understanding viscoelasticity. To best engage the students, conduct the first half of the associated Creepy Silly Putty activity before conducting this lesson.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandi N. Briggs
Marissa H. Forbes
Date Added:
09/18/2014
Viscous Fluids
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the similarities and differences in the behaviors of elastic solids and viscous fluids. Several types of fluid behaviors are described Bingham plastic, Newtonian, shear thinning and shear thickening along with their respective shear stress vs. rate of shearing strain diagrams. In addition, fluid material properties such as viscosity are introduced, along with the methods that engineers use to determine those physical properties.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandi N. Briggs
Marissa H. Forbes
Michael A. Soltys
Date Added:
09/18/2014
Wetting and Contact Angle
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with the concepts of wetting and contact angle. They are also introduced to the distinction between hydrophobic and hydrophilic surfaces. Students observe how different surfaces are used to maintain visibility under different conditions.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
What is Nanotechnology?
Unrestricted Use
CC BY
Rating
0.0 stars

This lesson plan is designed as a student-created newsletter to evaluate resources from nanotechnology magazines.  The students will then present their newsletters to the class.  

Subject:
Biology
Engineering
Physical Science
Material Type:
Diagram/Illustration
Author:
Integrated Nanosystems Development Institute (INDI)
Date Added:
06/24/2021