Updating search results...

Search Resources

36 Results

View
Selected filters:
  • water-and-society
Service Learning and Local Hydrogeology in the Classroom: An example from Anchorage, Alaska
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This project is designed to introduce students to a local hydrogeologic problem or issue of interest to the community. The project requires the students to learn about their local groundwater environment and apply principles and concepts that they learn in the classroom to an issue that is of concern to the public. This project provides a good introduction to "real world" problems that the students are likely to encounter as professionals. Students are required to synthesize information from a variety of sources and develop their own assessment of the problem and also to make recommendations based on their professional opinions.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Business and Communication
Chemistry
Hydrology
Management
Physical Science
Political Science
Social Science
Material Type:
Homework/Assignment
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
LeeAnn Munk
Date Added:
11/04/2021
TCE Transport to Woburn Wells G and H
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

To prepare to view the TCE animation, students could view the 'A Civil Action' movie and the instructor could read to them excerpts from the trial testimony and images from Woburn, wells G and H, geologic materials, geologic cross sections, the trial participants, and the federal courtroom in Boston (available as a attachment to this activity and at a website listed below). The discussion in Bair (2001) about scientists in the courtroom, the specific (excerpted) testimony presented by the three expert witnesses in the 'A Civil Action' trial, a chart summarizing the differences in their testimony, and the views of a federal judge on the goal of science versus the goal of a civil trial may also be worthwhile reading by the class prior to the assignment.

The instructor could also show students the large plates included in the USGS report by Myette and others (1987) that display potentiometric data and contours before and after the famous aquifer test performed in December 1985 and January 1986, just before the trial, and discuss the ramifications of having only two sets of water-level measurements to characterize all the changes in the flow system between 1964 and 1979, when wells G and H periodically operated. This makes students consider the substantial differences in making predictions based on a steady-state conceptualization of the flow system or a transient conceptualization.

The instructor could also show the animation of induced infiltration from the Aberjona River to wells G and H that also was created by Martin van Oort (M.S., 2005) and based on the research of Maura Metheny (M.S., 1998; Ph.D., 2004) at Ohio State University. Viewing both animations enables students to see that the water produced by wells G and H is a highly transient mixture derived from many different source areas within the valley.

The article by Bair and Metheny (2002) concerning the remediation activities at the Wells G & H Superfund Site could be used to show how groundwater contamination is cleaned up, why different remediation schemes needed to be used in different hydrogeologic settings, and why cleanup to U.S. EPA standards can take decades.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Business and Communication
Hydrology
Life Science
Management
Physical Science
Political Science
Social Science
Material Type:
Activity/Lab
Homework/Assignment
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Scott Bair
Date Added:
09/04/2019
Tale of Two Cities (and two hurricanes): New Orleans
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students use spreadsheets to analyze the reasons why New Orleans has subsided in the past 250 years.

Subject:
Applied Science
Ecology
Engineering
Environmental Science
Geology
Geoscience
History
History, Law, Politics
Hydrology
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Tom Juster
Date Added:
11/06/2014
Unit 1: Introduction to the hydrologic cycle and stakeholder analysis
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This unit introduces the hydrological cycle to provide context for the module as a whole. It particularly focuses on those portions of the hydrological cycle that take place on land and that form the basis for water that is used by society. Students conduct a stakeholder analysis to better understand societal issues around water. Then the scientific exercise of the unit emphasizes quantitative approaches to describing the critical portions that humans have access to: surface water and shallow ground water. Students calculate residence times and fluxes between reservoirs and track water particles on an annual basis. They also explore available data sets for specific reservoirs such as snowpack and rivers.

Show more about Online Teaching suggestions
Hide
Online-adaptable: This exercise could be converted to online whole-class discussions/lectures and a breakout group activity. Would be best done synchronously.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Bruce Douglas
Eric Small
Date Added:
09/26/2022
Unit 1: What is Sustainability in the Context of Water?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this three to four class unit, students will:

Assess the case for a global water crisis and its relevance in America.
Expand their understanding of sustainability as a contestable concept and movement.
Consider water resource-management objectives through the lens of sustainability.
Analyze region-specific examples of unsustainable use of water for agriculture.

This is largely achieved via student discussion and evaluation of texts and statistics provided to them. The text and statistics are derived from a variety of disciplines, mostly not from the geosciences. As such, the unit is very interdisciplinary, requiring students to synthesize disparate information and take a holistic perspective on water issues.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture
Business and Communication
Career and Technical Education
Chemistry
Hydrology
Management
Mathematics
Measurement and Data
Physical Science
Political Science
Social Science
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Robert Turner
Date Added:
05/04/2021
Unit 2: Water Footprints
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Unit 2 opens a window into water accounting and reveals intensive water use that few people think about. How much water goes into common commodities? Have you considered how much water it takes to support our modern American lifestyle and agricultural trade? Water that is embedded in products and services is called virtual water. Looking at the world through the lens of virtual water provides a watery focus to thorny discussions about water such as: the pros and cons of globalization and long distance trade; self sufficiency vs. reliance on other nations; ecosystem impacts of exports; and the impacts of relatively cheap imports on indigenous farming. Unit 2 also introduces the concept of a water footprint. A water footprint represents a calculation of the volume of water needed for the production of goods and services consumed by an individual or country. In this unit students will calculate their individual footprints and analyze how the water footprints of countries vary dramatically in terms of gross volumes and their components. As a result of these activities, students will learn of vast disparities in water access and application. They will also be challenged to consider mechanisms or policies that could foster greater equity in water footprints.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Robert Turner
Date Added:
05/04/2021
Unit 3: Monitoring groundwater storage with GPS vertical position
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This unit shows how GPS records of surface elevation can be used to monitor groundwater changes. Students calculate secular trends in the GPS time series and then use the original and detrended records to identify sites that are dominated by the elastic response to regional groundwater changes versus those dominated by local subsidence. They then compare the magnitude and timescales of fluctuations in Earth's surface elevation that result from sediment compaction, regional groundwater extraction, and natural climatic variability. This unit provides students with hands-on experience of the challenges and advantages of using geodetic data to study the terrestrial water cycle. The case study area is in California and the GPS records include the period of the profound 2012 -- 2016 drought.

Show more information on GPS versus GNSS
Hide
Note: Although the term GPS (Global Positioning System) is more commonly used in everyday language, it officially refers only to the USA's constellation of satellites. GNSS (Global Navigation Satellite System) is a universal term that refers to all satellite navigation systems including those from the USA (GPS), Russia (GLONASS), European Union (Galileo), China (BeiDou), and others. In this module, we use the term GPS even though, technically, some of the data may be coming from satellites in other systems.

Show more about Online Teaching suggestions
Hide
Online-ready: The exercise is electronic and could be done individually or in small online groups. Lecture is best done synchronously due to the technical nature. Discussion would be better that way too.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Business and Communication
Career and Technical Education
Environmental Studies
Geology
Hydrology
Life Science
Management
Mathematics
Measurement and Data
Physical Science
Political Science
Social Science
Material Type:
Activity/Lab
Case Study
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Bruce Douglas
Eric Small
Date Added:
09/26/2022
Unit 4: The Water Wars of Cochabamba, Bolivia
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this unit, students explore water privatization and freshwater access issues within the geophysical and cultural context of Cochabamba, Bolivia. Students identify topographical features that create rain shadows and their relationship to the water cycle. As they discuss several alternative models for supplying water to the residents of Cochabamba, they link concepts of environmental justice to the Cochabamba Water Wars of 2000.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Business and Communication
Career and Technical Education
Chemistry
Environmental Studies
Geology
Management
Physical Science
Political Science
Social Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Ruth Hoff
Date Added:
11/13/2021
Using Data From the Arsenic Problem in Bangladesh
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This module looks at the feasibility of using deeper wells as a source of low As water. The data sets are described in detail by van Geen et al. (van Geen et al., 2003; van Geen et al., 2002).

Students are being introduced to background information about the Arsenic problem in Bangladesh in lecture format. This includes health aspects and the history of the issue. They also have been using the sand tank groundwater model distributed by the University of Wisconsin Stevens Point (https://www.uwsp.edu/cnr-ap/watershed/Pages/GroundwaterModelWorkshop.aspx) to develop an intuitive understanding of groundwater flow and transport and are familiar with basic hydrogeological concepts. They inject a dye into the shallow aquifer of the model and study how pumping effects the migration of the Arsenic plume (Fig 1).

Students get an Excel spreadsheet that contains the longitude, latitude, and depth of 6000 wells and a satellite image that shows the area of investigation. They use Arc GIS software to plot data on the satellite image (Fig. 2), or alternatively plot the data as a function of longitude and latitude as a bubble plot in Excel. They find that the distribution of As in many regions is very heterogeneous. They then select sub-regions and look at the depth distribution and find that often there is a gap in the depth population of wells which turns out to be due to a clay layer varying in thickness that separates the shallow aquifer from the deep aquifer. The depth distribution (Fig. 3) of As also shows a characteristic pattern with most of the elevated As concentrated in the top 30 meters.
Students then discuss remediation options, in particular the possibility of switching to neighboring wells and using deeper groundwater as an alternative source of drinking water. They find that in many regions there are safe wells within a few hundred m of the high As well. However, it is not clear how long these wells will remain low in dissolved As and there are social barriers as well to use the neighbors well. They then determine a depth below which As concentrations are low in their region and elevate the risk of using deeper groundwater for drinking water and irrigation. They find that personal use is resulting in only ~1cm year-1 of water use, while irrigation (~1 m year-1) would considerably lower the water table and potentially could contaminate the deeper aquifer as well. The conclusion is that if deeper groundwater is utilized its use should be limited to personal use.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Business and Communication
Chemistry
Hydrology
Management
Physical Science
Political Science
Social Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Martin Stute
Date Added:
09/04/2019
Using the EXCEL Woburn Flow and Transport Model to Teach Modeling Concepts
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

To prepare for this project / assignment, students could view the 'A Civil Action' movie, the instructor could read to them excerpts from the book and/or the trial testimony, and show them images from Woburn, wells G and H, the subsurface geologic materials, geologic cross sections, the trial participants, and the federal courtroom in Boston (see below). The materials in Bair (2001) about scientists in the courtroom, specific (excerpted) testimony presented by the three expert witnesses in the 'A Civil Action' trial, a chart summarizing the differences in their testimony, and the views of a federal judge on the goal of science versus the goal of a civil trial may also be worthwhile reading by the class prior to the assignment.

The instructor could show students the large plates included in the USGS report by Myette and others (1987) that display potentiometric data and contours before and after the critically important aquifer test performed in December 1985 and January 1986, just before the trial, and discuss the significance of the stream discharge measurement made by the USGS upstream and downstream of municipal wells G and H to the experts' testimony and the outcome of the trial.

The instructor could also show the animations of TCE movement from 1960 to 1986 from the five known sources of TCE contamination at the Woburn Wells G & H Superfund Site (W.R. Grace, UniFirst dry cleaners, Olympia Trucking, Beatrice Foods, and New England Plastics) and the animation showing temporal changes in induced infiltration from the Aberjona River to wells G and H that were created by Martin van Oort (M.S., 2005) based on the research of Maura Metheny (M.S., 1998; Ph.D., 2004) at Ohio State University.

The article by Bair and Metheny (2002) concerning the remediation activities subsequent to the famous trial at the Wells G & H Superfund Site could be used to show how groundwater contamination is cleaned up, why different remediation schemes needed to be used in different hydrogeologic settings, and why cleanup to U.S. EPA standards can take decades.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Business and Communication
Hydrology
Life Science
Management
Mathematics
Measurement and Data
Physical Science
Political Science
Social Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Scott Bair
Date Added:
08/10/2019
Water Wars: A look at Gallatin Valley Water Controversies
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This virtual field trip takes students to the site of a local groundwater controversy in Gallatin Valley, Montana. Students virtually travel through seven stops which highlight the groundwater hydrology, local geology, geologic history of the valley and local groundwater policy. During the virtual field trip, students are asked to role-play as geologists hired to evaluate the area. Ultimately, they are asked to formulate an argument for or against the development of a nearby subdivision and to support that argument with evidence they gathered on the virtual field trip. Evidence may include observational field notes, hypotheses and questions regarding the geology and geohydrology of the area as well as limited hydrological data. Students must produce a final report discussing the decision they made as a consulting geologist. Reports should include a well-supported argument using the data and information collected during the virtual field trip. This virtual field trip gives students an opportunity to explore a local dispute regarding groundwater and learn how geology, geohydrology and scientific data are involved in policy issues.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Business and Communication
Career and Technical Education
Communication
Composition and Rhetoric
English Language Arts
Environmental Studies
Hydrology
Life Science
Management
Physical Science
Political Science
Social Science
Material Type:
Activity/Lab
Simulation
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Laurie Cantwell
Date Added:
11/18/2021
Watershed area and discharge relationships
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students use USGS WaterData website to find data on area, average annual discharge and response to high-precip events in small watersheds in southern New England. Data for the class are compiled to generate graphs showing the regional relationships between (1) area and discharge, and (2) area and time-lag between precip and maximum discharge.

terms: discharge, watershed, flood

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Steven Petsch
Date Added:
09/06/2020
Western water law project
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students read one of two articles (the "cases") from High Country News, a bi-weekly periodical that covers environmental issues in the western North America. Both articles are about situations in which the use of ground water by irrigators has decreased the amount of surface water available for users with senior water rights. I divide the class into groups representing 1) surface water users, 2) ground water users, and 3) a regulatory board. The groups read and discuss each article and prepare a case to present to the regulatory board. After each group has prepared their case, we gather for a hearing, where groups of consultants present their cases and are questioned by the regulatory board. At the end, the regulatory board makes "decisions" on each "case". The decision isn't the focus of the exercise. The most valuable part is the subsequent discussion about the cases and the common issues in them that get the students to recognize the connection between surface and ground water and how humans have come up with confusing and sometimes scientifically conflicting sets of laws to regulate each.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Business and Communication
Hydrology
Life Science
Management
Physical Science
Political Science
Social Science
Material Type:
Activity/Lab
Homework/Assignment
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Todd Rayne
Date Added:
11/04/2021
When Does Aquifer Heterogeneity Matter? Predicting the Influence of Alternative Conceptual Models on Contaminant Plume Migration
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this exercise, students predict changes in the movement of a dissolved plume in response to remedial pumping in an unconfined aquifer. The underlying conceptual model for the distribution of aquifer and aquitard materials is not known with certainty. Consequently, two alternative end-member conceptualizations are presented to students who are then asked to hypothesize differences in predicted responses at the pumping wells and nearby monitoring wells for each conceptual model. Predictions are compared to actual field data, and students discover that contaminant concentration measurements depend not only on the location of the observation point (in three dimensions), but also on the length of the screened interval through which water samples are collected. The activity is divided into three parts: (1) site/problem description, (2) formulation and testing of hypotheses for pumping wells, and (3) formulation and testing of hypotheses for monitoring wells. The activity gives students practice in three dimensional thinking and reinforces their intuitive understanding of contaminant plume migration in response to natural gradients and engineered stresses.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Business and Communication
Hydrology
Life Science
Management
Mathematics
Measurement and Data
Physical Science
Political Science
Social Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Larry Lemke
Date Added:
09/03/2020
Working with USGS discharge data
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this exercise, we use the USGS real-time data available online, and use it to construct a rating curve for the Walla Walla river near Touchet. We then make a simple model of flood inundation in ArcGIS for the area around our gaging station.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Nick Bader
Date Added:
09/06/2020
An integrated view of the Glendale Landscape
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students work in groups to develop posters that communicate their concept of landscape following several field labs (soils, sediment analysis, river discharge, vegetation survey, aquatic life) at one location. They must consider four categories: landscape interactions, landscape history, life, and perspectives/communication.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Business and Communication
Career and Technical Education
Chemistry
Environmental Studies
Hydrology
Management
Physical Science
Political Science
Social Science
Material Type:
Activity/Lab
Homework/Assignment
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Kaye Savage
Date Added:
09/13/2020