Updating search results...

Search Resources

54 Results

View
Selected filters:
  • volcanism
Reducing Volcanic Hazards to People and Property - An Assignment with Electronic Peer Review
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This electronic peer review exercise has students discuss the major volcanic hazards and risks to humans.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Assessment
Homework/Assignment
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Laura Guertin
Date Added:
09/18/2022
SeismicWaves Viewer & SeismicEruption Software
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity includes both the Seismic Waves Viewer and the Seismic Eruption software to help learners better understand earthquakes, volcanoes, and the structure of the Earth.

Seismic Waves is a browser-based tool to visualize the propagation of seismic waves from historic earthquakes through Earth's interior and around its surface. By carefully examining these seismic wave fronts and their propagation, the Seismic Waves tool illustrates how earthquakes can provide evidence that allows us to infer Earth's interior structure.

Seismic Eruption shows seismicity (earthquakes) and volcanic activity in space and time from 1960 to present. When the program is running, the user sees lights, which represent earthquakes, flashing on the screen in speeded-up time. The user can control the speed of the action. In addition, the program can show seismicity under Earth's surface in three-dimensional and cross-sectional views.

Earthquakes can be selected by magnitude and volcanic eruptions can be selected by volcanic explosivity index. In this way, large earthquakes and large eruptions can be selected to emphasize how different types of plate boundaries are characterized by different magnitudes of earthquakes (e.g. no major or great earthquakes occur on spreading ocean ridges). This lesson plan was developed by , Portland Oregon.

Students investigate how seismic waves travel through Earth's internal layers and bounce and bend at internal boundaries between mantle, outer core, and inner core.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Roger Groom, Mt Tabor Middle School
Date Added:
09/26/2022
The Sleeping Mountain
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this role-playing scenario, students represent townspeople whose lives and livelihoods are endangered by an active volcano which may or may not erupt in the near future.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Geoscience
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Rebecca Teed
Date Added:
09/28/2021
Unit 3: Hazards at Divergent Plate Boundaries
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students work in small groups to examine data and videos of earthquakes, submarine volcanic eruptions, and black smokers at submarine divergent plate boundaries, and then predict similar processes at subaerial divergent plate boundaries. The culminating activity has students use Google Earth to examine data for each plate boundary, connect seismic data with volcanic events to make connections between the style and scale of volcanic eruptions and seismic activity, and the resulting morphology of divergent plate boundaries. Data sets will include Google Earth, Smithsonian GVN, NOAA, USGS, and written accounts.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Mathematics
Measurement and Data
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Laurel Goodell
Peter Selkin
Rachel Teasdale
Date Added:
09/19/2022
Unit 4: Risk at Divergent Plate Boundaries
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Volcanoes typically give warning that they are coming out of dormancy and entering an eruptive phase. Being able to recognize those warning signs and take appropriate actions (e.g. evacuations) are important strategies for mitigating risk due to volcanic eruptions. In this activity, students document and interpret ground deformation and seismic activity associated with the 2010 eruption of Iceland's Eyjafjallajokull volcano, from its pre-eruption dormancy, through precursor activity, through the eruption and back into dormancy. Students learn how to recognize data characteristic of an imminent eruption and discover the time frame of precursor activity.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Career and Technical Education
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Physical Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Laurel Goodell
Peter Selkin
Rachel Teasdale
Date Added:
09/28/2022
Unit 5: Hazards and Risks at Convergent Plate Boundaries (Day 1 of Activity)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this two-day activity, students monitor an evolving volcanic crisis at a convergent plate boundary (Cascadia). Using monitoring data and geologic hazard maps, students make a series of forecasts for the impending eruption and associated risks. By the end of the activity, students will have learned the outcome of the eruption and assess the impacts of the eruption of Mount Rainier on specific locations around the volcano.
This unit begins by having students examine past volcanic eruptions at Mount St. Helens, associated with the Cascadia convergent plate boundary, through firsthand accounts by United States Geological Survey (USGS) personnel who describe their work monitoring the geologic activity and some associated impacts. During class on the first day (Unit 5), students will begin working in small groups to interpret one of three data sets used to monitor volcanic activity (seismic, gas and ash emissions, and tilt). During prework and in-class activities for day 2 (Unit 6), students will update their predictions by combining information from all three data sets in mixed groups in which students act as "experts" for a particular data set. The exercise culminates with students assessing the impacts of a simulated volcanic eruption at their assigned locations.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Career and Technical Education
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Laurel Goodell
Peter Selkin
Rachel Teasdale
Date Added:
09/19/2022
Unit 6: Hazards and Risks at Convergent Plate Boundaries (Day 2 of Activity)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this two-day activity, students monitor a simulated evolving volcanic crisis at a convergent plate boundary (Cascadia). Using monitoring data and geologic hazard maps, students make a series of forecasts for the impending eruption and associated risks. By the end of the activity, students will have learned the outcome of the eruption and assess the impacts of the eruption of Mount Rainier on specific locations around the volcano.
This unit is a continuation of Unit 5, in which students analyzed simulated pre-eruption seismic, tilt, and gas emission data. In this, the second day of the simulation, students update their eruption forecasts based on new data (in the prework) and then (in groups in class) by combining information from multiple data sets. In class, each group assesses the vulnerability of one or more assigned locations near Mount Rainier. The exercise culminates with students assessing the impacts of the simulated eruption at their assigned locations.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Career and Technical Education
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Laurel Goodell
Peter Selkin
Rachel Teasdale
Date Added:
09/19/2022
Using "Dante's Peak" to Discuss Response to Risk
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this classroom activity, students watch the movie "Dante's Peak" up to the point where Harry Dalton's supervisor arrives and talks to the town council. Students then compare and contrast Harry's assessment and advice to that of his supervisor, discuss the reaction of the town council members, and develop their own recommendations for how the scientists and town should proceed.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Applied Science
Biology
Career and Technical Education
Environmental Studies
Geology
Health, Medicine and Nursing
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Michael Phillips
Date Added:
09/10/2020
VEPP: A guided inquiry - Three months in the life of a volcano
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an exercise that is in development and has not yet been fully tested in the classroom. Please check back regularly for updates and changes.

This guided inquiry will investigate the three month phase of activity in the vicinity of Pu`u `O`o and the summit region (June 1, 2007 -- August 30, 2007).
Students will examine already prepared monitoring data derived from the VEPP website (GPS, tilt and seismic), and, with guidance, discover what other information is available to understand and speculate on the nature of the activity, including webcams, videos, still images, maps, and press releases.
Full length description:
Prior to doing this introductory laboratory exercise, students should be introduced to the basic instruments used in volcano monitoring. Before class, students will be provided with an assignment to reinforce their understanding about the techniques used in volcano monitoring.

During lab, students (in small groups) will be provided with the data files from a three month period of time in the vicinity of Pu`u `O`o and the summit region (June 1, 2007 -- August 30, 2007) (GPS, RSAM and Tilt) at the start of the exercise. The data files are provided under Instructor Materials below.
A worksheet will be provided to the students to guide them through the initial investigation of the graphs. Example questions include: What is the data showing in each of the graphs? Are there any specific events that are evident in your graph? As a group, can you determine if the events seen in one graph correlate to events seen in any of the other graphs? A discussion of what data the graphs are illustrating will be facilitated by the instructor.

Once students have examined and understand what the data is showing, they will propose hypotheses to explain the observed data trends and correlations. Through just-in-time teaching (JiTT), students will be provided with or guided to further information that may assist them in discovering the nature of the activity. For example, they can request to see maps, videos, webcams, and images of the area during the three-month period spanned by the exercise.
Materials for implementing this laboratory are provided for instructors and students (forthcoming).

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Jennifer Thomson
Date Added:
04/05/2022
VEPP: Hawaii Volcanoes National Park - A Restless Paradise
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an exercise that is in development and has not yet been fully tested in the classroom. Please check back regularly for updates and changes.

This activity is encompassed in a PowerPoint module (PowerPoint 6.1MB Oct1 10) with embedded Excel spreadsheets that will incorporate data and increase students' quantitative skills.

Brief three-line description of the activity or assignment and its strengths (you will have an opportunity to expand on this description later in the form):

This PowerPoint module is embedded with Excel spreadsheets and provides information about the geology of Hawai'i Volcanoes National Park. The core quantitative aspect of this module is graph interpretation. The module also requires students to convert units and solve the Pythagorean Theorem.

Full length description:This PowerPoint module introduces students to the geology and current volcanic activity at Hawai'i Volcanoes National Park in conjunction with the Volcanoes Exploration Program:Puu Oo (VEPP) project. The module briefly covers the geologic setting and evolution of a hot spot island chain, monitoring techniques, historical eruptions, and hazards. Along the way, students complete short, ad hoc spreadsheets to answer questions regarding visual observations of an earthquake map and determining latitude and longitude, finding the highest and lowest concentrations of SO2 gas from graphed data, interpreting tiltmeter graphs, solving the Pythagorean Theorem to determine distance between GPS stations, making visual observations from webcam images, and converting units for eruption volumes.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Judy McIlrath
Judy McIlrath McIlrth
Date Added:
09/29/2022
VEPP: Monitoring Pu'u O'o
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

NOTE: This activity has NOT been attempted yet in class, and therefore still needs significant refinement. It will be updated once it has been developed further.

Brief three-line description of the activity or assignment and its strengths:
This is a two-part exercise. Part I is designed to train students in the technical use of the VEPP website and to train them to use observations from multiple datasets (GPS, tilt, seismic, physical behavior) to draw conclusions about the volcano's physical behavior. Part II involves a month-long monitoring exercise using real-time data from Pu'u O'o followed by interpretation of those data.
Full length description:
This is a two-part exercise. The main goal is to provide as realistic a volcano monitoring experience as possible given classroom constraints. Part I is designed to provide students with the ability to work with the VEPP website to generate plots of GPS, seismic, and tilt data, as well as access webcam images and make movies from them. In the process, they will be interpreting data from the July 21 2007 dike injection and eruption event and focusing on deformation concepts.

Part II is an exploratory exercise, with the goal of reproducing the monitoring process a volcanologist would use for this volcano. The students are going to be responsible for monitoring the behavior of Pu'u O'o for one month. This process entails gathering data on a daily basis (all available data sources: GPS, seismic, physical observations, tilt), so as to accumulate a month-long record of the behavior of the volcano. Each week they will have to produce a report summarizing the behavior of the volcano, including plots of all measurements with time and correlations between different variables (e.g., seismic events vs horizontal movement from GPS). At the end of the month, the final report will also include calculations about changes in magma volume and comparisons to estimates of erupted volume. Students will also address several interpretive questions, including: a) how does magma storage volume (calculated from deformation data) compare with eruptive volume over the same period; b) how do the various monitoring parameters relate to each other; c) how does the behavior of Pu'u O'o during the month they observed it compare to the July 2007 behavior they analyzed in Part I; and c) comparison of the fluctuations and magnitudes of Pu'u O'o measurements to other types of volcanoes.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Karen Harpp
Date Added:
11/15/2016
VEPP: Monitoring the Pu'u 'Ō'ō Eruption of Kīlauea Volcano Using Geochemical, Deformation and Seismicity Timeseries Data
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Show credits
HidePu'u 'O'o at the end of episode 32 (USGS photograph by J.D. Griggs, 4/22/85, JG5363).
This is an exercise that is in development and has not yet been fully tested in the classroom. Please check back regularly for updates and changes.

Goals of this lab are to: (1) gain background on volcano monitoring using maps, photographs, and geochemical, deformation (tiltmeter) and seismic data from eruptive activity of the Pu'u 'Ō'ō eruption; (2) make and interpret geochemical, deformation and seismic data plots as part of a time-series analysis for particular intervals of eruptive activity; and (3) answer questions and discuss information about magmatic and structural processes associated with volcanism at Kīlauea Volcano.

Brief description of the activity

The current eruption of Kīlauea Volcano on the island of Hawai'i has been closely monitored and studied since its inception in 1983. This laboratory exercise utilizes the excitement of an ongoing eruption to demonstrate volcano monitoring, deformation, and magmatic processes to better understand an active hotspot volcano.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Chemistry
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Andrew R. Greene and Michael O. Garcia, University of Hawai'i at Mānoa
Date Added:
03/28/2018
VEPP: Part 1: Volcanic Hazards and Risk; Part 2: Monitoring an Active Volcano
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Please contact the author if you have questions, concerns or suggestions.

This is an applied in-class exercise designed to have students evaluate monitoring data. The students, broken into groups of 4, will describe, evaluate, and synthesize several monitoring datasets. They will come up with hypothesis for the data, which will be the basis for a class discussion.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Brittany Brand
Date Added:
11/13/2019
VEPP: Using maps to assess volcanic geologic hazards
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an exercise that is in development and has not yet been fully tested in the classroom. Please check back regularly for updates and changes.

Students will use a combination of topographic and geologic maps in interpret and analyze natural hazards of the Pu'uO'o eruption.

Brief three-line description of the activity or assignment and its strengths:
Students will use a topographic map to plot the direction of lava flow associated with eruptive activity of Kilauea Volcano, in Hawaii. They will assess the natural hazards associated with Kilauea's eruptive and gas activity in order to make predictions and assess the dangers to people and properties in the region.

Full length description:

You are a HVO scientist who will be assessing the natural hazards associated with Kilauea's activity including the dangers to people and properties in the region. There are three parts to this lab assignment: a pre-lab, lab, and news report. The pre-lab should be completed before attending the lab. In the pre-lab you will be asked to look at the style of volcanism associated with Pu'u O'o cone, a cinder-and-spatter cone located in the east rift zone.
In the lab you will be provided with 3 topographic and 1 geologic map to assess the natural hazards associated with Kilauea's activity including the dangers to people and properties in the region. You will be responsible for creating your own set of maps and materials from the pre-lab and lab exercises.
The third part of the assignment involves writing an accompanying news report to communicate the results of your work to the public. While you are encouraged to discuss all parts of the assignment with your peers, you must hand in your own work.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Brian Scheidt
Date Added:
06/22/2017
VEPP: Using the VEPP website in an introductory geology course: an investigation of the July 21, 2007 eruption of Pu'u O'o
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introductory geology students will use geologic data obtained from the VEPP website (tilt and seismic) to identify and interpret changes during the July 21st, 2007 eruption of Pu'u 'O'o.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Geoffrey Cook
Date Added:
11/15/2016
VEPP: Using volcano deformation data for lava flow hazard assessment and decision making, Part I: what do the instruments measure?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an exercise that is in development and has not yet been fully tested in the classroom. Please check back regularly for updates and changes.

Brief three-line description of the activity or assignment and its strengths:
This is the first part of a loosely linked three part activity. Each part can be used as a stand-alone activity with slight modification. This part introduces students to volcano monitoring using data from tiltmeters and GPS receivers by means of a very simple in-class demonstration of volcanic inflation/deflation, followed by small group discussion of real data and their implications, followed by individual homework assignment based on VEPP data interpretation
Full length description:

The instructor conducts the in-class demonstration described below (demonstration takes about 20 minutes):

Put the wet sand in the tray (fill up to about three-quarters of the tray depth)
Bury the balloon in the sand. Attach the pump to the balloon.
Shape the sand above the balloon to mimic a volcano.
The balloon is the model of the magma chamber inside the volcano. While it stays relatively deflated, the "volcano" above it shows no major change in shape.
Air is then pumped in the balloon, mimicking an infusion of magma in the magma chamber. As the balloon begins to fill out, it expands, deforming the volcano above it.
The volcano is now "active" and should be "monitored" by different instruments, namely, tiltmeters, GPS, and seismometers. The carpenters' levels mimic "tiltmeters." At this point it might be useful to ask the students to select where the tiltmeters should be placed, making sure one is "tangential" and the other is "radial" (perpendicular to each other). This is a good place to start a discussion about inflation and deflation events and how those are measured by tiltmeters.
Once there is enough air in the balloon to create an obvious bulge in the volcano, the use of GPS receivers for measuring volcano deformation can be discussed. Two long pins can be used as two GPS stations and the changing distance between them can demonstrate how deformation can be measured in 3-D. At this point, several inflation-deflation events can be demonstrated by carefully letting air out of the balloon and pumping it back in.
This demonstration introduces different geophysical instruments used for volcano monitoring and provides a simplified illustration of how they work.
This demonstration is followed by a brief overview of the VEPP website and the type of data available there.
Whole class discussion about different data types (example: inflation-deflation events as recorded by tiltmeters over a specific time period). Instructor will lead the discussion and demonstrate how the data is manipulated on-line.

The VEPP overview takes 10-15 minutes
After the whole class discussion and demonstration by instructor, students break into small groups (3-4 people per group). Instructor provides printed data plots for tiltmeters and GPS time series for the same time period. A map showing the locations of the corresponding instruments is also provided. Different groups get data for different time periods/eruption events. An example plot with clearly marked inflation/deflation events and instructions about how to read the plots will be helpful
Questions for students to answer in small groups:

Identify the dates/times when tiltmeters record inflation events
Identify dates/times when tiltmeters record deflation events
What does the GPS data show for each of those time periods?
What can you infer about the volcanic activity for those time periods from the data provided?

Small group discussion takes 15-20 minutes
Each group report back and compare their interpretations. Instructor facilitates discussion/provides feedback (20 minutes)
Instructor then demonstrates the webcam images/movies from the VEPP site for the same time periods/events as the data provided to the student groups so they can see whether they interpreted the data correctly or not. This is followed by discussion about uncertainties/ambiguities associated with real data and data interpretation. (10-15 minutes).

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
PRAJUKTI Bhattacharyya
Date Added:
11/15/2016
VEPP: Volcanic activity and monitoring of Pu`u `O`o, Kilauea volcano, Hawaii
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Brief three-line description of the activity or assignment and its strengths:

This is a 10-week group project for a Volcanic Hazards elective course, for undergraduate geology students. Students will access and analyze data from the current eruption of Pu`u `O`o, Kilauea volcano, Hawaii, and make interpretations of the activity. They will use data (mostly near-real-time) from a number of monitoring techniques, including seismic, deformation, observational, gas, and thermal. The activity will culminate with a written report and an oral presentation.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Business and Communication
Communication
Life Science
Mathematics
Measurement and Data
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Lizzette Rodriguez
Date Added:
09/12/2020
VEPP: Volcano Monitoring and Interpretation of Real-Time Data: A Project for Non-Science Majors
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an exercise that is in development and has not yet been fully tested in the classroom. Please check back regularly for updates and changes.

An ongoing project for small class size comprised of non-science majors. Students use the VEPP website as a monitoring tool to document and interpret real-time volcanic deformation data at Pu'u 'O'o and determine whether an eruptive event is occurring. They also incorporate past events at Kilauea/Pu'u 'O'o as models.

Full length description:

This project should be started midway into the semester or quarter, continuing until the end of the semester (students must first have enough background in geology/volcanology before they can tackle this project successfully, so lectures on magmatic differentiation, types of volcanism- explosive vs effusive, and targeted activities need to precede the start of the project). Students need to know how to read the data on the VEPP website- if classroom wi-fi is available and most students have laptops, instruction on navigation and interpretation can take place in the classroom; if not, a computer lab may be required for at least one class session. However, a large part of familiarizing students with the website can also be accomplished lecture-style by the instructor logging on in a 'smart' classroom.

Students should be divided into three (or some suitable number of) groups: each group will be responsible for reporting weekly on a specific monitoring technique (tilt, seismic, GPS), retrieving and interpreting their information from VEPP/VALVE website. Additional information including updates, past information and geology may be obtained from the USGS Hawaiian Volcano Observatory website.

Students will report current deformation information each week in a "Monday morning meeting" format- each of the three groups will pass out a brief written summary on the data they are responsible for, and give an oral report with questions from the other two groups to follow each presentation. Team spokespersons will rotate every week. Each group will touch on potential sources of error associated with their particular monitoring technique, and attempt to differentiate between real information and what might be extraneous "noise". Groups should be given a short time to confer in class before they present, but prior outside group meetings will be essential to a successful weekly presentation.

At the end of the three group presentations, the instructor should moderate a general discussion by all in an attempt to have the groups integrate their data (i.e., does one data set support another? Is there disparity? What conclusions can be drawn from this particular week's information, and how does it seem to fit, both short-term and long-term?). Instructor may introduce other information sources, like live webcam photos and/or a discussion of past history, to offer support, or lack of support, for a specific interpretation of data being presented by a team or teams (HVO website is a great resource for this).

As the semester proceeds, each of the groups plot their data on a large graph situated in the front of the class. We'll use both graphical plots and location maps to pinpoint events if they occur. Lectures will incorporate other tools to hopefully enhance and lend credence to the interpretation process- use of geologic observations, gas emissions and other information, the main reference source being the HVO website. Past Kilauea/Pu'u 'O'o events will need to be examined for comparison purposes.

This exercise is meant to simulate some of the tasks that volcanologists undertake in the real world.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Michael Johnson
Date Added:
11/15/2016
VEPP: Volcanologist Pro Tem: Exploring the Dynamics of Kilauea Volcano, Hawaii
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an exercise that is in development and has not yet been fully tested in the classroom. Please check back regularly for updates and changes.
This discovery activity puts students in the place of real volcanologists by giving them access to real-time data from Kilauea Volcano, Hawaii. They learn about volcano monitoring techniques, study case histories of important volcanic processes, and then form and test hypotheses for past and future volcanic events with multiple instruments and real-time data. As a result, students will understand the processes that shape a basaltic shield volcano.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Eric Christiansen
Date Added:
09/12/2020
VEPP: Working with the VEPP website in an online M.Ed. course
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students explore the VEPP website and complete a two-part problem set in which they work through the ideas presented in an EOS paper regarding eruptions at Kilauea and they try to find a deflation-inflation event using the VALVE3 software.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Eliza Richardson
Date Added:
11/15/2016