Students learn about human reflexes, how our bodies react to stimuli and …
Students learn about human reflexes, how our bodies react to stimuli and how some body reactions and movements are controlled automatically, without thinking consciously about the movement or responses. In the associated activity, students explore how reflexes work in the human body by observing an involuntary human reflex and testing their own reaction times using dominant and non-dominant hands. Once students understand the stimulus-to-response framework components as a way to describe human reflexes and reactions in certain situations, they connect this knowledge to how robots can be programmed to conduct similar reactions.
This is a description of many different activities that have been used …
This is a description of many different activities that have been used with Pre kinder gardeners to further their understanding of their bodies and their senses.
This course provides an introduction to important philosophical questions about the mind, …
This course provides an introduction to important philosophical questions about the mind, specifically those that are intimately connected with contemporary psychology and neuroscience. Are our concepts innate, or are they acquired by experience? (And what does it even mean to call a concept ‘innate’?) Are ‘mental images’ pictures in the head? Is color in the mind or in the world? Is the mind nothing more than the brain? Can there be a science of consciousness? The course will include guest lectures by Professors.
The students will investigate several different types of stimuli (including reflexes).. This …
The students will investigate several different types of stimuli (including reflexes).. This activity will help the students to gain a better understanding of how the nervous system functions.
Students consider human senses and the many everyday human-made sensors so common …
Students consider human senses and the many everyday human-made sensors so common in their lives. They learn about the three components of biosensorsâa special type of sensorâand their functions and importance. With this understanding, students identify various organs in the human body that behave as sensors, such as the pancreas. Using LEGO® MINDSTORMS® NXT robots, provided rbt robot programs and LEGO sensors (light, ultrasonic, sound, touch), students gain first-hand experience with sensors and come to see how engineer-designed sensors play important roles in our daily lives, informing people of their surroundings and ultimately improving our quality of life.
Learn how to add details to make the setting of your stories …
Learn how to add details to make the setting of your stories come alive in this Story Pirates video from Camp TV. By using words to describe how a place looks, sounds, feels, smells, and even tastes you can make your writing more compelling.
Students are given a variety of materials and asked to identify each …
Students are given a variety of materials and asked to identify each material as a solid, liquid or gas. They use their five senses ŰÓ sight, sound, smell, texture and taste ŰÓ to identify the other characteristics of each item.
Why do humans have two ears? How do the properties of sound …
Why do humans have two ears? How do the properties of sound help with directional hearing? Students learn about directional hearing and how our brains determine the direction of sounds by the difference in time between arrival of sound waves at our right and left ears. Student pairs use experimental set-ups that include the headset portions of stethoscopes to investigate directional hearing by testing each other's ability to identify the direction from which sounds originate.
Students follow the steps of the engineering design process to create their …
Students follow the steps of the engineering design process to create their own ear trumpet devices (used before modern-day hearing aids), including testing them with a set of reproducible sounds. They learn to recognize different pitches, and see how engineers must test designs and materials to achieve the best amplifying properties.
With the challenge to program computers to mimic the human reaction after …
With the challenge to program computers to mimic the human reaction after touching a hot object, students program LEGO® robots to "react" and move back quickly once their touch sensors bump into something. By relating human senses to electronic sensors used in robots, students see the similarities between the human brain and its engineering counterpart, the computer, and come to better understand the functioning of sensors in both applications. They apply an understanding of the human "stimulus-sensor-coordinator-effector-response" framework to logically understand human and robot actions.
Students gain a rigorous background in the primary human "sensors," as preparation …
Students gain a rigorous background in the primary human "sensors," as preparation for comparing them to some electronic equivalents in the associated activity. A review of human vision, hearing, smell, taste and touch, including the anatomies and operational principles, is delivered through a PowerPoint® presentation. Students learn the concept of "stimulus-sensor-coordinator-effector-response" to describe the human and electronic sensory processes. Student pairs use blindfolds, paper towels and small candies in a taste/smell sensory exercise. They take pre/post quizzes and watch two short online videos. Concepts are further strengthened by conducting the associated activity the following day, during which they learn about electronic touch, light, sound and ultrasonic sensors and then "see" sound waves while using microphones connected to computers running (free) Audacity® software.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.