The purpose of this activity is to demonstrate Newton's third law of …
The purpose of this activity is to demonstrate Newton's third law of motion which states that every action has an equal and opposite reaction through a small wooden car. The Newton cars show how action/reaction works and how the mass of a moving object affects the acceleration and force of the system. Subsequently, the Newton cars provide students with an excellent analogy for how rockets actually work.
In this lab students will investigate Newton's first law of motion or …
In this lab students will investigate Newton's first law of motion or the Law of Inertia. The first lab investigates an object at rest, and the effects of friction on motion. The second lab investigates an object in motion. Students will experiment with this law by varying their speed, while trying to drop a tennis ball in a given target zone. Although intended for seventh grade students this lab can be adjusted to fit the educational needs of each student. Definitions adapted from cK-12 Newton's First Law of Motion
Students come to see the exponential trend demonstrated through the changing temperatures …
Students come to see the exponential trend demonstrated through the changing temperatures measured while heating and cooling a beaker of water. This task is accomplished by first appealing to students' real-life heating and cooling experiences, and by showing an example exponential curve. After reviewing the basic principles of heat transfer, students make predictions about the heating and cooling curves of a beaker of tepid water in different environments. During a simple teacher demonstration/experiment, students gather temperature data while a beaker of tepid water cools in an ice water bath, and while it heats up in a hot water bath. They plot the data to create heating and cooling curves, which are recognized as having exponential trends, verifying Newton's result that the change in a sample's temperature is proportional to the difference between the sample's temperature and the temperature of the environment around it. Students apply and explore how their new knowledge may be applied to real-world engineering applications.
In this video segment adapted from NOVA, NASA learns hard lessons from …
In this video segment adapted from NOVA, NASA learns hard lessons from the first American attempt to do work while "walking" in space. The video also explores Newton's third law of motion.
6.252J is a course in the department’s “Communication, Control, and Signal Processing” …
6.252J is a course in the department’s “Communication, Control, and Signal Processing” concentration. This course provides a unified analytical and computational approach to nonlinear optimization problems. The topics covered in this course include: unconstrained optimization methods, constrained optimization methods, convex analysis, Lagrangian relaxation, nondifferentiable optimization, and applications in integer programming. There is also a comprehensive treatment of optimality conditions, Lagrange multiplier theory, and duality theory. Throughout the course, applications are drawn from control, communications, power systems, and resource allocation problems.
Physics I is a first-year physics course which introduces students to classical …
Physics I is a first-year physics course which introduces students to classical mechanics. This course has a hands-on focus, and approaches mechanics through take-home experiments. Topics include: kinematics, Newton’s laws of motion, universal gravitation, statics, conservation laws, energy, work, momentum, and special relativity.
Students design and build paper rockets around film canisters, which serve as …
Students design and build paper rockets around film canisters, which serve as engines. An antacid tablet and water are put into each canister, reacting to form carbon dioxide gas, and acting as the pop rocket's propellant. With the lid snapped on, the continuous creation of gas causes pressure to build up until the lid pops off, sending the rocket into the air. The pop rockets demonstrate Newton's third law of motion: for every action, there is an equal and opposite reaction.
On the topic of energy related to motion, this summary lesson is …
On the topic of energy related to motion, this summary lesson is intended to tie together the concepts introduced in the previous four lessons and show how the concepts are interconnected in everyday applications. A hands-on activity demonstrates this idea and reinforces students' math skills in calculating energy, momentum and frictional forces.
Building upon their understanding of forces and Newton's laws of motion, students …
Building upon their understanding of forces and Newton's laws of motion, students learn about the force of friction, specifically with respect to cars. They explore the friction between tires and the road to learn how it affects the movement of cars while driving. In an associated literacy activity, students explore the theme of conflict in literature, and the difference between internal and external conflict, and various types of conflicts. Stories are used to discuss methods of managing and resolving conflict and interpersonal friction.
By making and testing simple balloon rockets, students acquire a basic understanding …
By making and testing simple balloon rockets, students acquire a basic understanding of Newton's third law of motion as it applies to rockets. Using balloons, string, straws and tape, they see how rockets are propelled by expelling gases, and test their rockets in horizontal and incline conditions. They also learn about the many types of engineers who design rockets and spacecraft.
Students learn how and why engineers design satellites to benefit life on …
Students learn how and why engineers design satellites to benefit life on Earth, as well as explore motion, rockets and rocket motion. Through six lessons and 10 associated hands-on activities, students discover that the motion of all objects everything from the flight of a rocket to the movement of a canoe is governed by Newton's three laws of motion. This unit introduces students to the challenges of getting into space for the purpose of exploration. The ideas of thrust, weight and control are explored, helping students to fully understand what goes into the design of rockets and the value of understanding these scientific concepts. After learning how and why the experts make specific engineering choices, students also learn about the iterative engineering design process as they design and construct their own model rockets. Then students explore triangulation, a concept that is fundamental to the navigation of satellites and global positioning systems designed by engineers; by investigating these technologies, they learn how people can determine their positions and the locations of others.
In this activity, students revisit the Pop Rockets activity from Lesson 3. …
In this activity, students revisit the Pop Rockets activity from Lesson 3. This time, however, the design of their pop-rockets will be limited by budgets and supplies. They will get a feel for the limitations of a real engineering project as well as an opportunity to redesign and retest their rockets.
Students learn what a pendulum is and how it works in the …
Students learn what a pendulum is and how it works in the context of amusement park rides. While exploring the physics of pendulums, they are also introduced to Newton's first law of motion about continuous motion and inertia.
In the culminating activity of the unit, students explore and apply their …
In the culminating activity of the unit, students explore and apply their knowledge of forces, friction, acceleration and gravity in a two-part experiment. First, student groups measure the average acceleration of a textbook pulled along a table by varying weights (with optional extensions, such as with the addition of a pulley or an inclined plane). Then, with a simple modification to the same experimental setup, teams test different surfaces for the effects of friction, graphing and analyzing their results. Students also consider the real-world applications for high- and low-friction surfaces for different situations and purposes, seeing how forces play a role in engineering design and material choices.
Working as if they were engineers, students design and construct model solar …
Working as if they were engineers, students design and construct model solar sails made of aluminum foil to move cardboard tube satellites through “space” on a string. Working in teams, they follow the engineering design thinking steps—empathize, define, ideate, prototype, test, redesign—to design and test small-scale solar sails for satellites and space probes. During the process, learn about Newton’s laws of motion and the transfer of energy from wave energy to mechanical energy. A student activity worksheet is provided.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.