Students are introduced to the growing worldwide environmental problems that stem from …
Students are introduced to the growing worldwide environmental problems that stem from plastic waste. What they learn about microplastics and the typical components of the U.S. water treatment process prepares them to conduct three engaging associated activities. During the lesson, students become more aware of the pervasiveness and value of plastic as well as the downstream pollution and health dangers. They learn how plastic materials don’t go away, but become microplastic pollution that accumulates in water resources as well as human and other animal bodies. They examine their own plastic use, focusing on what they discard daily, and think about better ways to produce or package those items to eliminate or reduce their likelihood of ending up as microplastic pollution. A concluding writing assignment reveals their depth of comprehension. The lesson is enhanced by arranging for a local water treatment plant representative to visit the class for Qs and As. In three associated activities, students design/test microplastic particle filtering methods for commercial products, create mini wastewater treatment plant working models that remove waste and reclaim resources from simulated wastewater, and design experiments to identify the impact of microplastics on micro-invertebrates.
Science has now provided an excuse for those of us used to …
Science has now provided an excuse for those of us used to being chided by our dentists for not brushing often enough: blame your cavities on the Industrial Revolution. New research suggests that the dietary changes associated with the Industrial Revolution 150 years ago (and with the invention of agriculture 10,000 years ago) caused an epidemic of tooth decay and gum disease. The culprits are oral bacteria. The human mouth is the native home of a wide variety of microbes, some helpful species and some harmful. Over the course of human history, eating more starch and sugar seems to have tipped the balance in favor of the disease-causing bacteria. Even without ultrasonic toothbrushes and mouthwashes, our ancestors may have had healthier teeth than we do!
The innate immune system recognises components of pathogens which are intrinsically foreign …
The innate immune system recognises components of pathogens which are intrinsically foreign (i.e. not present on normal mammalian cells), such as Lipolysaccharides, Peptidoglycans and D-isoform amino acids.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Microbes are widely known to spread disease, but could they also help prevent it? A look inside in the mosquito gut reveals a community of microbes fit for the job. Mosquitoes are well-known vectors of disease, transmitting West Nile and Zika virus and the pathogens that cause malaria and dengue fever. Unfortunately, traditional control methods have led to insecticide resistance and negative impacts on other organisms, but mosquitoes, like other animals, also host non-disease-causing microbes in their gut. These benign microorganisms can directly interact with the deadly pathogens harbored by these insects. They can also affect mosquito traits influencing pathogen transmission, such as their population density, development, biting rate, and survival. For example, certain bacterial strains can reduce female fertility and the egg-hatching rate, while others can protect mosquitoes from environmental stress..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Oil spills have devastating effects on the environment, and thousands, of varying size, occur each year. Spilled oil can be removed from the environment in numerous ways, such as with the use of dispersants to break up oil slicks on the water surface. But while oil spills themselves pose well-known threats to marine life, the methods used for oil cleanup can also have unintended consequences. To examine these effects, researchers recently investigated how treatment of oil with dispersants produced synthetically (Finasol) and by bacteria (rhamnolipid) impact microbial communities and their ability to break down oil from the subarctic Atlantic Ocean. They found that cold-loving bacteria initially dominated the bacterial communities when both dispersants were used, but some key species of bacteria that specialize in breaking down aromatic hydrocarbons, which are the major and most toxic components of crude oil, became abundant over time in only the presence of rhamnolipid..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
Student teams practice water quality analysis through turbidity measurement and coliform bacteria …
Student teams practice water quality analysis through turbidity measurement and coliform bacteria counts. They use information about water treatment processes to design prototype small-scale water treatment systems and test the influent (incoming) and effluent (outgoing) water to assess how well their prototypes produce safe water to prevent water-borne illnesses.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Plants frequently produce toxic chemicals to defend themselves against hungry insects, meaning that insects must often counteract these defenses if they want to obtain a meal. The Camellia weevil is one such insect that enlists the help of microorganisms living in its gut to neutralize toxins in the tea-oil camellia plant. Given the unique life cycle of this weevil, researchers were interested in finding out how its specialized gut microbiome is acquired. The team used genetic sequencing techniques to identify the microbes in samples taken from weevil guts, tea-oil camellia fruits, and the surrounding soil. They found that bacteria from the soil were primarily responsible for the toxin-degrading activity of the weevil gut microbiome. In particular, Acinetobacter sp. strain AS23 can migrate into the weevil gut and degrade the toxin saponin, thereby allowing the weevils to inhabit and feed on the tea-oil camellia fruits..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
Poster promoting planned housing as a method to deter disease in cities, …
Poster promoting planned housing as a method to deter disease in cities, showing microorganisms. New York City Housing Authority - Fiorello H. La Guardia, Mayor - Langdon W. Post, Commissoner.
Presents the basic operating principles and techniques of the conventional surface water …
Presents the basic operating principles and techniques of the conventional surface water treatment processes of coagulation, flocculation, sedimentation, and filtration, plus those of disinfection processes.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.