This is a basic subject on matrix theory and linear algebra. Emphasis …
This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in other disciplines, including systems of equations, vector spaces, determinants, eigenvalues, similarity, and positive definite matrices.
This course covers matrix theory and linear algebra, emphasizing topics useful in …
This course covers matrix theory and linear algebra, emphasizing topics useful in other disciplines such as physics, economics and social sciences, natural sciences, and engineering. It parallels the combination of theory and applications in Professor Strang’s textbook Introduction to Linear Algebra. Course Format This course has been designed for independent study. It provides everything you will need to understand the concepts covered in the course. The materials include:
A complete set of Lecture Videos by Professor Gilbert Strang. Summary Notes for all videos along with suggested readings in Prof. Strang’s textbook Linear Algebra. Problem Solving Videos on every topic taught by an experienced MIT Recitation Instructor. Problem Sets to do on your own with Solutions to check your answers against when you’re done. A selection of Java® Demonstrations to illustrate key concepts. A full set of Exams with Solutions, including review material to help you prepare.
Linear Algebra is a text for a first US undergraduate Linear Algebra …
Linear Algebra is a text for a first US undergraduate Linear Algebra course. It is Free. You can use it as a main text, as a supplement, or for independent study.
We believe the entire book can be taught in twenty five 50-minute …
We believe the entire book can be taught in twenty five 50-minute lectures to a sophomore audience that has been exposed to a one year calculus course. Vector calculus is useful, but not necessary preparation for this book, which attempts to be self-contained. Key concepts are presented multiple times, throughout the book, often first in a more intuitive setting, and then again in a definition, theorem, proof style later on. We do not aim for students to become agile mathematical proof writers, but we do expect them to be able to show and explain why key results hold. We also often use the review exercises to let students discover key results for themselves; before they are presented again in detail later in the book.
This is a web-based, interactive, introductory linear algebra text. Interactive elements include …
This is a web-based, interactive, introductory linear algebra text. Interactive elements include auto-graded exercises, built-in GeoGebra activities, and Octave code. Topics include vectors and matrices, linear systems, vector spaces (R^n and abstract), linear transformations, eigenvalues, orthogonality, and determinants. Strong emphasis is placed on geometry and visualization. Several applications are included, and links to numerous applications are provided. To access the text, please visit https://sites.google.com/view/lin-alg-interactive-intro/
This is a book on linear algebra and matrix theory. While it …
This is a book on linear algebra and matrix theory. While it is self contained, it will work best for those who have already had some exposure to linear algebra. It is also assumed that the reader has had calculus. Some optional topics require more analysis than this, however.
This book features an ugly, elementary, and complete treatment of determinants early in the book. Thus it might be considered as Linear algebra done wrong. I have done this because of the usefulness of determinants. However, all major topics are also presented in an alternative manner which is independent of determinants.
The book has an introduction to various numerical methods used in linear algebra. This is done because of the interesting nature of these methods. The presentation here emphasizes the reasons why they work. It does not discuss many important numerical considerations necessary to use the methods effectively. These considerations are found in numerical analysis texts.
This 20-minute video lesson looks at the relationship between left nullspace, rowspace, …
This 20-minute video lesson looks at the relationship between left nullspace, rowspace, column space and nullspace. [Linear Algebra playlist: Lesson 98 of 143]
After being traditionally published for many years, this formidable text by W. …
After being traditionally published for many years, this formidable text by W. Keith Nicholson is now being released as an open educational resource and part of Lyryx with Open Texts! Supporting today’s students and instructors requires much more than a textbook, which is why Dr. Nicholson opted to work with Lyryx Learning.
Overall, the aim of the text is to achieve a balance among computational skills, theory, and applications of linear algebra. It is a relatively advanced introduction to the ideas and techniques of linear algebra targeted for science and engineering students who need to understand not only how to use these methods but also gain insight into why they work.
The contents have enough flexibility to present a traditional introduction to the subject, or to allow for a more applied course. Chapters 1–4 contain a one-semester course for beginners whereas Chapters 5–9 contain a second semester course. The text is primarily about real linear algebra with complex numbers being mentioned when appropriate (reviewed in Appendix A).
Mathematics explained: Here you find videos on various math topics: Pre-university Calculus …
Mathematics explained: Here you find videos on various math topics:
Pre-university Calculus (functions, equations, differentiation and integration) Vector calculus (preparation for mechanics and dynamics courses) Differential equations, Calculus Functions of several variables, Calculus Linear Algebra Probability and Statistics
Find out what solid-state physics has brought to Electromagnetism in the last …
Find out what solid-state physics has brought to Electromagnetism in the last 20 years. This course surveys the physics and mathematics of nanophotonics—electromagnetic waves in media structured on the scale of the wavelength. Topics include computational methods combined with high-level algebraic techniques borrowed from solid-state quantum mechanics: linear algebra and eigensystems, group theory, Bloch’s theorem and conservation laws, perturbation methods, and coupled-mode theories, to understand surprising optical phenomena from band gaps to slow light to nonlinear filters. Note: An earlier version of this course was published on OCW as 18.325 Topics in Applied Mathematics: Mathematical Methods in Nanophotonics, Fall 2005.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.