Study the motion of a toy car on a ramp and use motion sensors to digitally graph the position data and then analyze it. Make predictions about what the graphs will look like, and consider what the corresponding velocity graphs would look like.
Learn about position, velocity, and acceleration graphs. Move the little man back …
Learn about position, velocity, and acceleration graphs. Move the little man back and forth with the mouse and plot his motion. Set the position, velocity, or acceleration and let the simulation move the man for you.
Multi-scale systems (MuSS) consist of components from two or more length scales …
Multi-scale systems (MuSS) consist of components from two or more length scales (nano, micro, meso, or macro-scales). In MuSS, the engineering modeling, design principles, and fabrication processes of the components are fundamentally different. The challenge is to make these components so they are conceptually and model-wise compatible with other-scale components with which they interface. This course covers the fundamental properties of scales, design theories, modeling methods and manufacturing issues which must be addressed in these systems. Examples of MuSS include precision instruments, nanomanipulators, fiber optics, micro/nano-photonics, nanorobotics, MEMS (piezoelectric driven manipulators and optics), X-Ray telescopes and carbon nano-tube assemblies. Students master the materials through problem sets and a project literature critique.
Build your own system of heavenly bodies and watch the gravitational ballet. …
Build your own system of heavenly bodies and watch the gravitational ballet. With this orbit simulator, you can set initial positions, velocities, and masses of 2, 3, or 4 bodies, and then see them orbit each other.
Build your own system of heavenly bodies and watch the gravitational ballet. …
Build your own system of heavenly bodies and watch the gravitational ballet. With this orbit simulator, you can set initial positions, velocities, and masses of 2, 3, or 4 bodies, and then see them orbit each other.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Over the past several decades, a concerning health trend has emerged among children: ACL injuries are on the rise. That’s got clinicians re-thinking the best approach to recovery. Non-operative measures such as physical therapy, bracing, and activity modification used to be the norm. Now, given the concerning statistics, many believe surgical reconstruction could actually be the more conservative approach long term. New findings reported in the July issue of the American Journal of Sports Medicine appear to support that view. They suggest that ACL reconstruction through an iliotibial band technique can restore kinetic and kinematic function in the growing knee—and maintain it well into adulthood. The authors of the study tested the knees of 38 individuals who underwent iliotibial band ACL reconstruction as skeletally immature children. Because individuals enrolled in the study were of different ages, they represented a spectrum of post-surgery follow-up times, ranging from 1 to 20 years..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Oropharyngeal dysphagia is characterized by difficulty swallowing and occurs in about 45% of stroke patients. Thickening agents are one effective way to help patients with dysphagia consume liquids and foods. However, few viscosity levels per study have been assessed, and the optimal levels for patients with oropharyngeal dysphagia have not yet been established. To address that gap, the Physiology Digestive team from the Hospital of Mataró recently tested Nutilis Clear®, a xanthan gum-based thickener, at 7 shear viscosity levels. They looked at the effects of viscosity on the safety, efficacy, and physiology of swallowing in patients with post-stroke oropharyngeal dysphagia. The researchers first provided patients a thin liquid, followed by thickened boluses, from the highest to the lowest. Each bolus was provided in duplicate..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This is a quiz designed to accompany the online simulation "Projectile Motion," …
This is a quiz designed to accompany the online simulation "Projectile Motion," which is part of the PhET Interactive Simulations of the University of Colorado Boulder.The quiz was designed for Canvas. Each question includes instructions for an action the student is to complete in the online simulation, followed by a multiple choice question.
The CK-12 21st Century Physics FlexBook is a collaborative effort of the …
The CK-12 21st Century Physics FlexBook is a collaborative effort of the Secretaries of Education and Technology and the Department of Education that seeks to elevate the quality of physics instruction across the Commonwealth of Virginia.
Physics I is a first-year physics course which introduces students to classical …
Physics I is a first-year physics course which introduces students to classical mechanics. This course has a hands-on focus, and approaches mechanics through take-home experiments. Topics include: kinematics, Newton’s laws of motion, universal gravitation, statics, conservation laws, energy, work, momentum, and special relativity.
Blast a Buick out of a cannon! Learn about projectile motion by …
Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass. Add air resistance. Make a game out of this simulation by trying to hit a target.
Blast a Buick out of a cannon! Learn about projectile motion by …
Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass. Add air resistance. Make a game out of this simulation by trying to hit a target.
Explore what makes a reaction happen by colliding atoms and molecules. Design …
Explore what makes a reaction happen by colliding atoms and molecules. Design experiments with different reactions, concentrations, and temperatures. When are reactions reversible? What affects the rate of a reaction?
Explore what makes a reaction happen by colliding atoms and molecules. Design …
Explore what makes a reaction happen by colliding atoms and molecules. Design experiments with different reactions, concentrations, and temperatures. When are reactions reversible? What affects the rate of a reaction?
2010 marks the 400th anniversary of Galileo’s astonishing sightings of features on …
2010 marks the 400th anniversary of Galileo’s astonishing sightings of features on the moon, stars, and moons around Jupiter that no one had seen before. Recreate these new ways of seeing and exploring from the materials and techniques Galileo had on hand, while you reflect on the times and works of Galileo. What was it like to improvise new ways of seeing and exploring from the materials and techniques on hand? What do we notice? What surprises us? How can we relate to past experience and ideas? What are we curious to research? How does our experimenting grow into our learning? Let your own curiosity drive your explorations.
Explore your own straight-line motion using a motion sensor to generate distance …
Explore your own straight-line motion using a motion sensor to generate distance versus time graphs of your own motion. Learn how changes in speed and direction affect the graph, and gain an understanding of how motion can be represented on a graph.
This course covers the thermo-fluid dynamic phenomena and analysis methods for conventional …
This course covers the thermo-fluid dynamic phenomena and analysis methods for conventional and nuclear power stations. Specific topics include: kinematics and dynamics of two-phase flows; steam separation; boiling, instabilities, and critical conditions; single-channel transient analysis; multiple channels connected at plena; loop analysis including single and two-phase natural circulation; and subchannel analysis.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.