Updating search results...

Search Resources

43 Results

View
Selected filters:
  • flight
Inquiry and Engineering: Gliders
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams design, build and test small-sized gliders to maximize flight distance and an aerodynamic ratio, applying their knowledge of fluid dynamics to its role in flight. Students experience the entire engineering design process, from brainstorming to CAD (or by hand) drafting, including researching (physics of aerodynamics and glider components that take advantage of that science), creating materials lists, constructing, testing and evaluating—all within constraints (works with a launcher, budget limitation, maximizing flight distance to mass ratio), and concluding with a summary final report. Numerous handouts and rubrics are provided.

Subject:
Applied Science
Engineering
Mathematics
Measurement and Data
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Melanie Finn-Scofield
Date Added:
01/01/2015
Introduction to Aerospace Engineering I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This first part of the course Introduction to Aerospace Engineering presents an overall picture of the aeronautics domain. This overview involves a number of different perspectives on the aerospace domain, and shows some basic principles of the most important concepts for flight. Then the basic aerodynamics are covered, followed by flight mechanics.Study GoalsHave an overview of the history of flightApply basic/constitutive principles of mechanics of fluids - a.o. Bernoulli.Apply control volume approachesExplain flow regimes (viscous/non-viscous; compressible/incompressible aerodynamics) and to estimate viscous and thermal effects Compute lift/drag of simple configurationsDescribe reference frames and derive general equations of motion for flight and orbital mechanicsApply equations of motion to determine aircraft performance in steady gliding, horizontal and climbing flightDerive aircraft performance diagram and flight envelope, in relation to aircraft morphology, lift-drag polar and engine performance

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
J.M. Hoekstra
Date Added:
02/02/2016
Introduction to the History of Technology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to the consideration of technology as the outcome of particular technical, historical, cultural, and political efforts, especially in the United States during the 19th and 20th centuries. Topics include industrialization of production and consumption, development of engineering professions, the emergence of management and its role in shaping technological forms, the technological construction of gender roles, and the relationship between humans and machines.

Subject:
Arts and Humanities
History
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Mindell, David
Date Added:
09/01/2006
Learning to Fly: The Wright Brothers' Adventure
Unrestricted Use
Public Domain
Rating
0.0 stars

This activity sends students undercover to Dayton and Kitty Hawk to report secretly on the activities of two brothers who are making a big glider in their bicycle shop. Students prepare by researching aviation history and then, posing as news reporters, interview the brothers (and neighbors). Instructions are included for building the Wright brothers' gliders and first plane.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
NASA
Date Added:
11/10/2005
May the Force Be With You: Drag
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson explores the drag force on airplanes. The students will be introduced to the concept of conservation of energy and how it relates to drag. Students will explore the relationship between drag and the shape, speed and size of an object.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
09/18/2014
May the Force Be With You: Thrust
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will study how propellers and jet turbines generate thrust. This lesson focuses on Isaac Newton's 3rd Law of Motion, which states that for every action there is an equal and opposite reaction.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
09/18/2014
My Path: Captain Sterling Gilliam, Director, National Naval Aviation Museum
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Have you ever wondered how important people get to where they are? National Naval Aviation Museum director, Captain Sterling Gilliam, shares his path in this segment brought to you by STEM in 30.

Subject:
Career and Technical Education
Social Science
Material Type:
Activity/Lab
Provider:
National Air and Space Museum
Author:
National Air and Space Museum
Date Added:
09/29/2022
My Path: Flying in Space is the Biggest Team Sport Ever: Astronaut Michael Good
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Astronaut Michael Good - Learn about the importance of teamwork in any job field in this episode of My Path.

Subject:
Applied Science
Career and Technical Education
Physical Science
Social Science
Material Type:
Activity/Lab
Provider:
National Air and Space Museum
Author:
National Air and Space Museum
Date Added:
09/29/2022
My Path: Inspired by a WASP, Alex Blake - Analysis & Test Engineer at Wing
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Learn how Alex Blake, an Analysis and Test Engineer at Wing was inspired by one of the Women Airforce Service Pilots of WWII and went on to become an engineer at Wing.

Subject:
Applied Science
Computer Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
National Air and Space Museum
Author:
National Air and Space Museum
Date Added:
09/30/2022
My Path: The Life Lessons of a Tuskegee Airman
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Perceive, prepare, perform and persevere. The lessons Col. Charles McGee learned as a Tuskegee Airman and applied to the rest of his life.

Subject:
Applied Science
Career and Technical Education
Physical Science
Social Science
Material Type:
Activity/Lab
Provider:
National Air and Space Museum
Author:
National Air and Space Museum
Date Added:
09/29/2022
My Path: Walter Watson - Flying on SR-71 Blackbird
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Walter Watson was the first and only African-American to qualify as a crewmember in the SR-71. Hear from this amazing aviator.

Subject:
Career and Technical Education
Social Science
Material Type:
Activity/Lab
Provider:
National Air and Space Museum
Author:
National Air and Space Museum
Date Added:
09/30/2022
Physical Intelligence
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

For all of the bodies attached to the many great minds that walk the Institute’s halls, in the work that goes on at MIT the body is present as an object of study, but is all but unrecognized as an important dimension of our intelligence and experience. Yet the body is the basis of our experience in the world; it is the very foundation on which cognitive intelligence is built. Using the MIT gymnastics gym as our laboratory, the Physical Intelligence activity will take an innovative, hands-on approach to explore the kinesthetic intelligence of the body as applicable to a wide range of disciplines. Via exercises, activities, readings and discussions designed to excavate our physical experience, we will not only develop balance, agility, flexibility and strength, but a deep appreciation for the inherent unity of mind and body that suggests physical intelligence as a powerful complement to cognitive intelligence.

Subject:
Applied Science
Health, Medicine and Nursing
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Riskin, Noah
Date Added:
01/01/2002
Slingshot to the Outer Planets
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the engineering challenges involved with interplanetary space travel. In particular, they learn about the gravity assist or "slingshot" maneuver often used by engineers to send spacecraft to the outer planets. Using magnets and ball bearings to simulate a planetary flyby, students investigate what factors influence the deflection angle of a gravity assist maneuver.

Subject:
Applied Science
Astronomy
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jake Lewis
Malinda Schaefer Zarske
Date Added:
10/14/2015
Transforming the Future of Flight
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment adapted from NASA, learn how engineers are transforming the future of flight by designing airplanes based on principles found in nature. In the early 1900s, the Wright Brothers found inspiration for their first airplane in nature. Their "Flyer," which was modeled on a bird's flexible wing design, was steered and stabilized by pulleys and cables that twisted the wingtips. Despite its success, this control strategy quickly vanished from aviation. Instead, stiff wings capable of withstanding the greater forces associated with increased aircraft weights and flying speeds became the standard. In this video segment adapted from NASA, learn how designs found in nature have inspired today's aerospace engineers as they conceive the next-generation of flying machines. Grades 3-12.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
Argosy Foundation
WGBH Educational Foundation
Date Added:
05/09/2006
Up, Up and Away! - Airplanes
Read the Fine Print
Educational Use
Rating
0.0 stars

The airplanes unit begins with a lesson on how airplanes create lift, which involves a discussion of air pressure and how wings use Bernoulli's principle to change air pressure. Next, students explore the other three forces acting on airplanes thrust, weight and drag. Following these lessons, students learn how airplanes are controlled and use paper airplanes to demonstrate these principles. The final lessons addresses societal and technological impacts that airplanes have had on our world. Students learn about different kinds of airplanes and then design and build their own balsa wood airplanes based on what they have learned.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Water Bottle Rockets
Read the Fine Print
Educational Use
Rating
0.0 stars

What makes rockets fly straight? What makes rockets fly far? Why use water to make the rocket fly? Students are challenged to design and build rockets from two-liter plastic soda bottles that travel as far and straight as possible or stay aloft as long as possible. Guided by the steps of the engineering design process, students first watch a video that shows rocket launch failures and then participate in three teacher-led mini-activities with demos to explore key rocket design concepts: center of drag, center of mass, and momentum and impulse. Then the class tests four combinations of propellants (air, water) and center of mass (weight added fore or aft) to see how these variables affect rocket distance and hang time. From what they learn, student pairs create their own rockets from plastic bottles with cardboard fins and their choices of propellant and center of mass placement, which they test and refine before a culminating engineering field day competition. Teams design for maximum distance or hang time; adding a parachute is optional. Students learn that engineering failures during design and testing are just steps along the way to success.

Subject:
Career and Technical Education
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Duff Harrold
Sara Pace
Date Added:
02/07/2017